PATH PARTITIONS AND PACKS OF ACYCLIC DIGRAPHS

R. Aharoni, I. Ben-Arroyo Hartman and A. J. Hoffman

In memory of Ernst Straus

Let G be an acyclic directed graph with $|V(G)| \ge k$. We prove that there exists a colouring $\{C_1, C_2, \ldots, C_m\}$ such that for every collection $\{P_1, P_2, \ldots, P_k\}$ of k vertex disjoint paths with $|\bigcup_{j=1}^k P_j|$ a maximum, each colour class C_i meets $\min\{|C_i|, k\}$ of these paths. An analogous theorem, partially interchanging the roles of paths and colour classes, has been shown by Cameron [4] and Saks [17] and we indicate a third proof.

1. Introduction. Let G = (V, E) be a directed graph containing no loops or multiple edges. A path P in G is a sequence of distinct vertices (v_1, v_2, \ldots, v_l) such that $(v_i, v_{i+1}) \in E$, $i = 1, 2, \ldots, l-1$. The set of vertices $\{v_1, v_2, \ldots, v_l\}$ of a path $P = (v_1, v_2, \ldots, v_l)$ will be denoted by V(P). The cardinality of P, denoted by |P|, is |V(P)|.

A family \mathscr{P} of paths is called a *path-partition* of G if its members are vertex disjoint and $\bigcup \{V(P): P \in \mathscr{P}\} = V$. For each nonnegative integer k, the k-norm $|\mathscr{P}|_k$ of a path partition $\mathscr{P} = \{P_1, \ldots, P_m\}$ is defined by

$$|\mathscr{P}|_k = \sum_{i=1}^m \min\{|P_i|, k\}.$$

A partition which minimizes $|\mathcal{P}|_k$ is called *k-optimum*. For example, a 1-optimum partition is a partition *P* containing a minimum number of paths.

A partial k-colouring is a family $\mathscr{C}^k = \{C_1, C_2, \dots, C_t\}$ of at most k disjoint independent sets C_i called colour classes. The cardinality of a partial k-colouring $\mathscr{C}^k = \{C_1, C_2, \dots, C_t\}$ is $|\bigcup_{i=1}^t C_i|$, and \mathscr{C}^k is said to be optimum if $|\bigcup_{i=1}^t C_i|$ is as large as possible. A path partition $\mathscr{P} = \{P_1, P_2, \dots, P_m\}$ and a partial k-colouring \mathscr{C}^k are orthogonal if every path P_i in \mathscr{P} meets min $\{|P_i|, k\}$ different colour classes of \mathscr{C}^k .

Berge [2] made the following conjecture:

Conjecture 1. Let G be a directed graph and let k be a positive integer. Then for every k-optimum path partition \mathcal{P} , there exists a partial k-colouring \mathscr{C}^k orthogonal to \mathcal{P} .