G-BORDISM WITH SINGULARITIES AND G-HOMOLOGY

Harold M. Hastings and Stefan Waner

Abstract

The bordism and cobordism theories of singular G-manifolds of specified kinds are used to represent various ordinary G-homology and cohomology theories, and their relationship to each other, as well as their relationship to non-singular G-bordism, is studied.

1. Introduction. Sullivan once pointed out that ordinary homology may be viewed geometrically as a bordism theory with singularities. This has been formally established by Baas in [1] and by Buoncristiano, Rourke and Sanderson in [3]. Dually, the associated cobordism theories represent ordinary cohomology.

Let G be a finite group. One then has several notions of what is meant by ordinary G-cohomology. The first to be proposed was the functor $X \mapsto H^{*}\left(X \times{ }_{G} E G\right)$ for a G-space X, where $E G$ denotes the universal contractible free G-space. Subsequently, Bredon [2] and Illman [6] described a theory of the following type. Let \mathscr{G} denote the category whose objects are the G-spaces G / H for subgroups H and whose morphisms $G / H \rightarrow G / K$ are the G-equivariant maps. A contravariant coefficient system is then a contravariant functor T from \mathscr{G} to the category of abelian groups. The associated ordinary G-cohomology theory is a generalized G-cohomology theory (see [2]) with dimension axiom of the form

$$
H_{G}^{n}(G / K ; T)= \begin{cases}T(G / K) & \text { if } n=0 \\ 0 & \text { if } n \neq 0\end{cases}
$$

More recently, it has been shown, [18], [8], [9], that this theory extends to an $R O(G)$-graded theory when the coefficient system T extends to a Mackey functor (in that it admits a transfer). In this theory, the coefficient system $A: G / H \mapsto A(H)$, the Burnside ring of H, then assumes the role played by Z-coefficients nonequivariantly. As yet, no geometric description of cycles in the non-integrally graded part of the dual theory, $H_{*}^{G}(X)$ exists; if V is a non-trivial G-module, how does one view the classes in $H_{V}^{G}(X ; A)$?

It is not clear how to extend Sullivan's ideas to represent these G-cohomology theories as singular cobordism theories. Moreover, two

