IWASAWA THEORY FOR THE ANTICYCLOTOMIC EXTENSION

RODNEY I. YAGER

We compute the structure of local units modulo elliptic units for the anticyclotomic Z_p -extension of an imaginary quadratic field with class number one.

Introduction. Let K be an imaginary quadratic field with discriminant $-d_K$ and, for simplicity, class number one. We let p be a rational prime which splits in K, and write K_{∞}^- for the anticyclotomic \mathbb{Z}_p -extension of K, the unique \mathbb{Z}_p -extension of K unramified outside p such that the action of complex conjugation c on $\Gamma^- = \operatorname{Gal}(K_{\infty}^-/K)$ is given by

$$c\cdot\tau=c\tau c^{-1}=\tau^{-1}.$$

Let K_n^- denote the *n*-th layer of the extension K_{∞}^- over *K*. It is clear that both primes of *K* dividing (*p*) share the same inertia group for the extension K_n^- over *K*, which is unramified outside *p*. Under our assumption that *K* has class number one, it follows that both primes are totally ramified in K_n^- . Choose one of the primes p of *K* dividing (*p*), and denote by U_n the group of principal units (i.e. those congruent to one modulo the maximal ideal) of the completion of K_n^- at the unique prime above p. The natural embedding of K_n^- in its completion sends the group of principal global units E_n of K_n^- into U_n , and we write E_n for the \mathbb{Z}_p -submodule of U_n which they generate. The $\mathbb{Z}_p[[\Gamma^-]]$ -module $X_{\infty} = \lim_{\leftarrow} U_n/\overline{E}_n$, where the projections are the norm maps, clearly is important in the arithmetic of *K*, as it is the Galois group of the maximal abelian *p*-extension of $K_{\infty}^$ unramified outside p, or equivalently, the *p*-primary part of the idèle class group of K_{∞}^- .

The $\mathbb{Z}_p[[\Gamma^-]]$ -module X_{∞} becomes a torsion $\lambda = \mathbb{Z}_p[[T]]$ -module in the usual way if we fix a topological generator τ of Γ^- and define the action of T by setting

$$T\cdot x=(\tau-1)\cdot x.$$

The classification theorem for torsion λ -modules shows that there is a unique set of principal λ -ideals $\{\mathscr{F}_1, \ldots, \mathscr{F}_r\}$ such that there is a λ -homomorphism $X_{\infty} \to \bigoplus_{i=1}^r \lambda / \mathscr{F}_i$ with finite kernel and co-kernel. Moreover,