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THE NUMBER OF EQUATIONS DEFINING POINTS
IN GENERAL POSITION

TIM SAUER

Bounds are established for the number of generators of the graded
homogeneous ideal of a set of points in generic or in uniform position in
the projective plane. For n < 11, n points in uniform position must have
the "general" number of generators. It is shown by example that this
fails for n = 12.

Introduction. Let Z be a set of points in P,2, k algebraically closed. We
say the points of Z lie in generic position if Z imposes independent
conditions on curves containing it. If this holds for all subsets of Z we say
that Z lies in uniform position. Given a set Z in one of these types of
"general position", one would like to count the number of equations
needed to cut out Z, or more precisely, the minimal number of generators
v of the graded homogeneous ideal /(Z).

This question has arisen most recently in calculations of the Cohen-
Macaulay-type of singularities. For example, it is shown in [7] that if A is
the local ring at a curve singularity P in A3

Λ, and if the lines of the tangent
cone at P correspond to a set of distinct points Z in generic position in
P^2, then the Cohen-Macaulay-type of A is equal to v(I(Z)) — 1. It is then
natural to look for geometric conditions on Z which will allow the
Cohen-Macaulay-type to be computed.

Let s denote the number of points belonging to Z, d the integer such
that {dγ) < s < (d+

2\ and define

N(s) =

Geramita and Maroscia [6] have shown that almost all sets of s points in
P 2 are defined by exactly N(s) equations. We give a new proof of this fact
(1.7). However, v(I(Z)) is not constant on the sets of s points in generic
position. It follows from a theorem of Dubreil [4] that the best one can
say is that if Z lies in generic position, then N(s) < v(I(Z)) < d + 1.
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