ERRATA CORRECTION TO ON THE HOLOMORPHY OF MAPS FROM A COMPLEX TO A REAL MANIFOLD

SUBHASHIS NAG

Volume 110, No. 1, (1984), 191-201

On p. 198 (fourth line from the bottom) of the quoted paper I erred in saying that $d_0 \omega_{\theta}^*$ varies continuously with θ near $\theta = 0$. Nevertheless, as pointed out to me by C. J. Earle, continuous dependence of ker $d_{\theta} \Phi$ on θ is true because the implicit function theorem guarantees that the fibers of Φ are C^1 submanifolds in $M(\Gamma)$. So the rest of the argument holds unchanged.

Interestingly, no continuous dependence of any kind is needed to verify that Φ induces a well-defined almost complex structure on $T(\Gamma)$. Indeed let $G_{\theta} = d_0 \omega_{\theta}^*(G_0)$. Then

$$\ker d_{\theta} \Phi \oplus G_{\theta} = L^{\infty}(\Gamma) = K_0 \oplus G_0.$$

But note $d_{\theta}\Phi(g_{\theta}) = d_{0}\Phi(g_{0})$, (for any $g_{0} \in G_{0}$ and $g_{\theta} \in G_{\theta}$), if and only if $g_{\theta} = d_{0}\omega_{\theta}^{*}(g_{0})$. Since $d_{0}\omega_{\theta}^{*}$ restricted to G_{0} is a *complex* linear isomorphism onto G_{θ} we are completely done.