A BONNESEN-STYLE INRADIUS INEQUALITY IN 3-SPACE

J. R. Sangwine-Yager

A Bonnesen-style inradius inequality for convex bodies in E^{3} is obtained using the method of inner parallel bodies. The inequality involves the volume, surface area and mean-width of the body.
I. Introduction. By a convex body we mean a compact convex set with non-empty interior. Let K be a planar convex body with area A, perimeter L, inradius r, and circumradius R. An inequality of Bonnesen states:

$$
L^{2}-4 \pi A \geq \pi^{2}(R-r)^{2} .
$$

This inequality follows from

$$
\begin{equation*}
0 \geq A-x L+x^{2} \pi, \quad r \leq x \leq R \tag{1}
\end{equation*}
$$

Equality holds in (1), at $x=r$, for the "sausage" bodies, that is, those bodies which are the Minkowski sum of a line segment and a ball (with radius r). At $x=R$ equality only holds for balls. For proofs of these inequalities see Eggleston [5, pp. 108-110].

An extension of Bonnesen's inradius inequality in the plane to higher dimensions began with the conjecture by Wills [11] that

$$
0 \geq V-r S+(n-1) r^{n} \omega_{n}
$$

In this paragraph, V will represent the n-dimensional volume of a convex body in E^{n}, S its n-dimensional surface area, and ω_{n} the volume of the unit n-ball. The conjecture was proved simultaneously by Bokowski [1] and Diskant [4]. Equality holds only for the n-balls. Osserman [8] showed that

$$
\begin{equation*}
0 \geq V-r S+(n-1) r^{2} \sqrt[n-1]{\omega_{n}(S / n)^{n-2}} \tag{2}
\end{equation*}
$$

where equality also holds only for the n-balls. This inequality is the sharper because a translate of $r B$ is contained in K.

The results of this paper will be limited to the case $n=3$. The volume and surface area of the convex body K will be represented by $V(K)$ and $S(K)$. The unit 3-ball centered at the origin is denoted B and $V(B)=\omega$. The functional $M(K)$ will be proportional to the

