HYPERBOLIC GEOMETRY IN k-CONVEX REGIONS

Diego Mejia and David Minda

Abstract

A simply connected region Ω in the complex plane \mathbb{C} with smooth boundary $\partial \Omega$ is called k-convex $(k>0)$ if $k(z, \partial \Omega) \geq k$ for all $z \in \Omega$, where $k(z, \partial \Omega)$ denotes the euclidean curvature of $\partial \Omega$ at the point z. A different definition is used when $\partial \Omega$ is not smooth. We present a study of the hyperbolic geometry of k-convex regions. In particular, we obtain sharp lower bounds for the density λ_{Ω} of the hyperbolic metric and sharp information about the euclidean curvature and center of curvature for a hyperbolic geodesic in a k-convex region. We give applications of these geometric results to the family $K(k, \alpha)$ of all conformal mappings f of the unit disk D onto a k-convex region and normalized by $f(0)=0$ and $f^{\prime}(0)=\alpha>0$. These include precise distortion and covering theorems (the Bloch-Landau constant and the Koebe set) for the family $K(k, \alpha)$.

1. Introduction. We study the hyperbolic geometry of certain types of convex regions called k-convex regions. It should be emphasized that our approach is geometric rather than analytic. Our work is a continuation of that of Minda ([11], [12], [13], [14]). The paper [11] deals with the hyperbolic geometry of euclidean convex regions, while [12] treats the hyperbolic geometry of spherically convex regions. A reflection principle for the hyperbolic metric was established in [13]; this reflection principle leads to a criterion for hyperbolic convexity that was employed in [14] to give a more penetrating analysis of certain aspects of the hyperbolic geometry of both euclidean and spherically convex regions.

Roughly speaking, a region Ω in the complex plane \mathbb{C} is k-convex ($k>0$), provided $k(z, \partial \Omega) \geq k$ for all $z \in \partial \Omega$. Here $k(z, \partial \Omega)$ denotes the euclidean curvature of $\partial \Omega$ at the point z. Of course, this only makes sense if $\partial \Omega$ is a closed Jordan curve of class C^{2}. This condition is actually sufficient for a region to be k-convex, but not necessary. Precisely, a region Ω is (euclidean) k-convex if $|a-b|<2 / k$ for any pair of distinct points $a, b \in \Omega$ and the intersection of the two closed disks of radii $1 / k$ that have a and b on their boundary lies in Ω. For example, an open disk of radius $1 / k$ is k-convex as is the intersection of finitely many such disks. Thus, for a region to be k-convex it must possess a certain degree of roundness.

