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EXAMPLES OF FOLIATIONS WITH
FOLIATED GEOMETRIC STRUCTURES

Luis A. CORDERO AND ROBERT A. WOLAK

We present examples of foliated compact nilmanifolds, whose foli-
ations are neither simple nor given by suspensions, admitting various
foliated geometric structures. For example, we construct foliations
which are:

1. transversely symplectic but not transversely Kahler,
2. transversely symplectic but not transversely holomorphic,
3. transversely Sasakian but not transversely cosymplectic.

1. Foliated structures on foliated manifolds. Let (M,^) be a foliated
manifold. The foliation & is called an (N9 (?)-structure (cf. [14]) if &
is given by a cocycle ̂  = {£//,//, gij) where:

1. {[//} is an open covering of M,
2. f: Ui —• N are submersions with connected fibres,
3. gij' fj(Ui ΠUj) —• fj{Ui Π Uj) are local diffeomorphisms of N

for which

(a) fi\u,nUj = gij ° fjlϋiΠUp

(b) there exists hy e G such that hij\ft(UιΠUj) = gij.
If the group G acts quasi-analytically (i.e. if for some element h

of G there exists an open subset of N on which h is the identity
transformation then h itself is the identity), then we have the following

LEMMA {Thurston [14]). If the group G acts quasi-analytically, then
any (N, G)~structure is developable, i.e. there exists a covering M ofM
and a developing mapping D: M —• M such that the lifted foliation
SF is given by the fibres of D. Moreover, there is a homomorphism
h: 7t\(M) —• G, called the holonomy homomorphism, such that the
mapping D is %\{M)-equivariant for these two actions of the group.

Any foliated geometric structure of (M, y ) defines the correspond-
ing structure on the transverse manifold (cf. [16, 17]), which in this
case can be chosen to be an open submanifold of N. If the devel-
oping mapping is surjective and its fibres are connected, then the
transverse manifold can be identified with N. The holonomy pseu-
dogroup of (M, &~) has as its representative a pseudogroup generated
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