ON MEANS OF DISTANCES
 ON THE SURFACE OF A SPHERE. II (UPPER BOUNDS)

Gerold Wagner ${ }^{1}$

Given N points x_{1}, \ldots, x_{N} on the unit sphere S in Euclidean d space $(d \geq 3)$, lower bounds for the deviation of the sum $\sum\left|x-x_{j}\right|^{\alpha}$, $\alpha>1-d ; x \in S$, from its mean value were established in terms of L^{1}-norms in the first part of this paper. In the present part it is shown that these bounds are best possible. Our main tool is a multidimensional quadrature formula with equal weights.

1. Introduction. On the surface $S=S^{d-1}$ of the unit sphere in d dimensional Euclidean space $E^{d} \quad(d \geq 3)$, we consider a certain class of distance functions and distance functionals, associated with a given N point set $\omega_{N}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ on S. Denote by $|x-y|$ the Euclidean distance between two points x and y in E^{d}. Let $x \in S^{d-1}$ be a variable point. For each value of a parameter $\alpha(1-d<\alpha<\infty)$ consider the distance function $U_{\alpha}\left(x, \omega_{N}\right)$ which we define as follows:

$$
U_{\alpha}\left(x, \omega_{N}\right)=\sum_{j=1}^{N}\left|x-x_{j}\right|^{\alpha}-N \cdot m(\alpha, d) \quad \text { for } \alpha \neq 0
$$

and

$$
U_{0}\left(x, \omega_{N}\right)=\sum_{j=1}^{N} \log \left|x-x_{j}\right|-N \cdot m(0, d) .
$$

Here $m(\alpha, d)$ denotes the mean value of $\left|x-x_{j}\right|^{\alpha}$ on S^{d-1}, i.e.

$$
\begin{aligned}
m(\alpha, d) & =\frac{1}{\sigma(S)} \int_{S}\left|x-x_{j}\right|^{\alpha} d \sigma(x) \quad \text { for } \alpha \neq 0 \\
m(0, d) & =\frac{1}{\sigma(S)} \int_{S} \log \left|x-x_{j}\right| d \sigma(x)
\end{aligned}
$$

where σ is the $(d-1)$-dimensional area measure on S^{d-1}.
In the first part [4] we proved certain lower bounds for the L^{1}-norms of the functions $U_{\alpha}\left(x, \omega_{N}\right)$ (see Theorem 1 in [4]). The existence of such lower bounds is due to the fact that uniform distribution on S^{d-1}

[^0]
[^0]: ${ }^{1}$ The author died on March 10, 1990 in a skiing accident in Austria.

