ON MEANS OF DISTANCES ON THE SURFACE OF A SPHERE. II (UPPER BOUNDS)

GEROLD WAGNER¹

Given N points x_1, \ldots, x_N on the unit sphere S in Euclidean d space $(d \ge 3)$, lower bounds for the deviation of the sum $\sum |x-x_j|^{\alpha}$, $\alpha > 1 - d$; $x \in S$, from its mean value were established in terms of L^1 -norms in the first part of this paper. In the present part it is shown that these bounds are best possible. Our main tool is a multidimensional quadrature formula with equal weights.

1. Introduction. On the surface $S = S^{d-1}$ of the unit sphere in *d*dimensional Euclidean space E^d $(d \ge 3)$, we consider a certain class of distance functions and distance functionals, associated with a given N point set $\omega_N = \{x_1, x_2, \ldots, x_N\}$ on S. Denote by |x - y| the Euclidean distance between two points x and y in E^d . Let $x \in S^{d-1}$ be a variable point. For each value of a parameter α $(1 - d < \alpha < \infty)$ consider the distance function $U_{\alpha}(x, \omega_N)$ which we define as follows:

$$U_{\alpha}(x, \omega_N) = \sum_{j=1}^N |x - x_j|^{\alpha} - N \cdot m(\alpha, d) \quad \text{for } \alpha \neq 0,$$

and

$$U_0(x, \omega_N) = \sum_{j=1}^N \log |x - x_j| - N \cdot m(0, d).$$

Here $m(\alpha, d)$ denotes the mean value of $|x - x_j|^{\alpha}$ on S^{d-1} , i.e.

$$m(\alpha, d) = \frac{1}{\sigma(S)} \int_{S} |x - x_j|^{\alpha} d\sigma(x) \quad \text{for } \alpha \neq 0,$$

$$m(0, d) = \frac{1}{\sigma(S)} \int_{S} \log|x - x_j| d\sigma(x),$$

where σ is the (d-1)-dimensional area measure on S^{d-1} .

In the first part [4] we proved certain lower bounds for the L^1 -norms of the functions $U_{\alpha}(x, \omega_N)$ (see Theorem 1 in [4]). The existence of such lower bounds is due to the fact that uniform distribution on S^{d-1}

¹ The author died on March 10, 1990 in a skiing accident in Austria.