ON ORTHOMORPHISMS BETWEEN VON NEUMANN PREDUALS AND A PROBLEM OF ARAKI

L. J. Bunce and J. D. Maitland Wright

Abstract

A problem of Araki concerning the characterization of orthogonality preserving positive maps between preduals of von Neumann algebras is solved in a general setting.

Introduction. In an interesting recent article, Araki [1] initiated the study of orthogonal decomposition preserving positive linear maps (o.d. homomorphisms) between preduals of von Neumann algebras. (See below for definitions.)
Let M and N be von Neumann algebras and let $\phi: M_{*} \rightarrow N_{*}$ be a linear mapping. When either M or N is of Type I , with no direct summand of Type I_{2}, Araki proved that ϕ is a bijective o.d. homomorphism if, and only if, $\phi^{*}=z \pi$ where z is a positive invertible element of the centre of M and $\pi: N \rightarrow M$ is a Jordan isomorphism.

Araki posed the problem of establishing an analogous characterization when M and N were of Type II or Type III.

Araki used delicate Radon-Nikodym methods which seem very difficult to generalize to algebras which are not of Type I. However, by adopting a different approach, we are able to show, for arbitrary von Neumann algebras M and N, that if $\phi: M_{*} \rightarrow N_{*}$ is an o.d. homomorphism then $\phi^{*} \pi=z \mathrm{id}_{M}$ where z is a positive central element of M and π is a Jordan $*$ homomorphism, and we obtain a characterization in these terms. If ϕ is an o.d. isomorphism, we find that z is invertible and that π is a Jordan $*$ isomorphism. This proves that Araki's characterization of o.d. isomorphisms is valid for arbitrary von Neumann algebras M and N.

1. Preliminaries. Two positive linear functionals ρ, τ in the predual M_{*} of a W^{*}-algebra M are said to be orthogonal, written $\rho \perp \tau$, if the corresponding support projections $s(\rho), s(\tau)$ are orthogonal elements in the algebra M. Every hermitian functional ρ in M_{*} admits a unique orthogonal decomposition $\rho=\rho_{+}-\rho_{-}$, where $\rho_{+}, \rho_{-} \in M_{*}^{+}$ and $\rho_{+} \perp \rho_{-}$. On the other hand every hermitian element x in M has a unique orthogonal decomposition $x=x_{+}=x_{-}$, where $x_{+}, x_{-} \geq 0$ and $x_{+} \cdot x_{-}=0$.
