BERGMAN AND HARDY SPACES WITH SMALL EXPONENTS

Kehe Zhu

We show that for each 0 the dual space of the Hardyand weighted Bergman space on the open unit ball is isomorphic tothe Bloch space (with equivalent norms) under certain volume integralpairing.

1. Introduction. We present a new approach to an old problem, namely, the problem of describing the continuous linear functionals on the Bergman and Hardy spaces with $0 . We restrict our attention to the open unit ball in <math>\mathbb{C}^n$, even though our approach has the potential to generalize to bounded symmetric domains.

Let B_n be the open unit ball in \mathbb{C}^n with boundary ∂B_n . Let $H(B_n)$ denote the space of all holomorphic functions in B_n . For $0 and <math>\alpha > -1$ we let

$$L^p_a(B_n, dv_\alpha) = H(B_n) \cap L^p(B_n, dv_\alpha)$$

denoted the weighted Bergman space, where

$$dv_{\alpha}(z) = C_{\alpha}(1-|z|^2)^{\alpha} dv(z)$$

Here dv is volume measure on B_n and C_{α} a normalizing constant so that dv_{α} has total mass 1. For $f \in L^p_a(B_n, dv_{\alpha})$ we write

$$||f||_{\alpha,p} = \left[\int_{B_n} |f(z)|^p \, dv_\alpha(z)\right]^{1/p}$$

A linear functional F on $L^p_a(B_n, dv_\alpha)$ is bounded if there exists a constant C>0 such that $|F(f)| \leq C ||f||_{\alpha,p}$ for all f in $L^p_a(B_n, dv_\alpha)$. The dual space of $L^p_a(B_n, dv_\alpha)$, denoted $L^p_a(B_n, dv_\alpha)^*$, consists of all bounded linear functionals on $L^p_a(B_n, dv_\alpha)$. For each $0 the space <math>L^p_a(B_n, dv_\alpha)^*$ is a Banach space with the norm

$$||F|| = \sup\{|F(f)| : ||f||_{\alpha,p} \le 1\}.$$

Note that $L^p_a(B_n, dv_\alpha)$ itself is not a Banach space when 0 .