TWISTED ALEXANDER POLYNOMIAL AND REIDEMEISTER TORSION

TERUAKI KITANO

This paper will show that the twisted Alexander polynomial of a knot is the Reidemeister torsion of its knot exterior. As an application we obtain a proof that the twisted Alexander polynomial of a knot for an SO(n)-representation is symmetric.

Introduction.

In 1992, Wada [4] defined the twisted Alexander polynomial for finitely presentable groups. Let Γ be a finitely presentable group. We suppose that the abelianization $\Gamma/[\Gamma, \Gamma]$ is a free abelian group $T_r = \langle t_1, \ldots, t_r | t_i t_j = t_j t_i \rangle$ of rank r. Then we will assign a Laurent polynomial $\Delta_{\Gamma,\rho}(t_1,\ldots,t_r)$ with a unique factorization domain R-coefficients to each linear representation ρ : $\Gamma \to GL(n;R)$. We call it the twisted Alexander polynomial of Γ associated to ρ . For simplicity, we suppose that R is the real number field \mathbf{R} and the image of ρ is included in $SL(n;\mathbf{R})$.

Because we are mainly interested in the case of the group of a knot, hereafter we suppose that Γ is a knot group. Let $K \subset S^3$ be a knot and E its exterior of K. We denote the canonical abelianization of Γ by

$$\alpha:\Gamma\to T=\langle t\rangle$$

and the twisted Alexander polynomial $\Delta_{\Gamma,\rho}(t)$ for $\Gamma = \pi_1 E$ by $\Delta_{K,\rho}(t)$. It is a generalization of the Alexander polynomial $\Delta_K(t)$ of K in the following sense. The Alexander polynomial $\Delta_K(t)$ of K is written as

$$\Delta_K(t) = (t-1)\Delta_{K,1}(t)$$

where $\mathbf{1}: \Gamma \to \mathbf{R} - \{0\}$ is the 1-dimensional trivial representation of Γ .

On the other hand, Milnor [2] proved the following theorem about the connection between the Alexander polynomial and the Reidemeister torsion in 1962. We consider the abelianization

$$\alpha:\Gamma\to T$$