UNIQUENESS FOR THE *n*-DIMENSIONAL HALF SPACE DIRICHLET PROBLEM

D. SIEGEL AND E. O. TALVILA

In \mathbb{R}^n , we prove uniqueness for the Dirichlet problem in the half space $x_n > 0$, with continuous data, under the growth condition $u = o(|x| \sec^{\gamma} \theta)$ as $|x| \to \infty$ ($x_n = |x| \cos \theta, \gamma \in \mathbb{R}$). Under the natural integral condition for convergence of the Poisson integral with Dirichlet data, the Poisson integral will satisfy this growth condition with $\gamma = n - 1$. A Phragmén-Lindelöf principle is established under this same growth condition. We also consider the Dirichlet problem with data of higher order growth, including polynomial growth. In this case, if $u = o(|x|^{N+1} \sec^{\gamma} \theta)$ ($\gamma \in \mathbb{R}$, $N \ge 1$), we prove solutions are unique up to the addition of a harmonic polynomial of degree N that vanishes when $x_n = 0$.

1. Introduction and notation.

We use the following notation. In \mathbb{R}^n $(n \geq 2)$ let Π_+ be the half space $x_n > 0$ and $\partial \Pi_+$ the hyperplane $x_n = 0$. For $x \in \mathbb{R}^n$, let $y \in \mathbb{R}^{n-1}$ be identified with the projection of x onto $\partial \Pi_+$. For $x \in \Pi_+$, write $x_n = |x| \cos \theta$ and $|y| = |x| \sin \theta$ $(0 \leq \theta < \frac{\pi}{2})$. Let B_ρ be the ball of radius ρ , centre the origin in \mathbb{R}^n , and dS_{n-1} its surface element. A ball with centre $x \neq 0$ is denoted $B_\rho(x)$. The volume of the unit n-ball is $\omega_n = \pi^{n/2}/\Gamma(1 + n/2)$. When integrating over regions in \mathbb{R}^{n-1} the integration variable is written y' and the angle between y' and y (for fixed y) is θ_1 . Unit vectors are written with a caret, e.g., $\hat{x} = x/|x|$, and \hat{e}_i is the unit vector along the *i*th coordinate axis. Finally, for $k \in \mathbb{Z}$, \mathcal{P}_k is the set of (real) homogeneous harmonic polynomials of degree k and \mathcal{Y}_k the set of (real) spherical harmonics of degree k (see [3]) with the proviso that $\mathcal{P}_k = \mathcal{Y}_k = \{0\}$ for k < 0. If g is a function on the unit sphere, then $||g||^2 = \int_{\partial B_1} |g(\hat{x})|^2 dS_{n-1}$.

The half space Dirichlet problem is to find u satisfying

(1.1)
$$u \in C^2(\Pi_+) \cap C^{\circ}(\overline{\Pi}_+)$$

$$(1.2) \qquad \qquad \Delta u = 0, \quad x \in \Pi_+$$

(1.3) $u = f, \quad x \in \partial \Pi_+,$