ON CONSTRAINED EXTREMA

Thomas I. Vogel

Abstract

Assume that I and J are smooth functionals defined on a Hilbert space H. We derive sufficient conditions for I to have a local minimum at y subject to the constraint that J is constantly $J(y)$.

The first order necessary condition for I to have a constrained minimum at y is that for some constant $\lambda, I_{y}^{\prime}+\lambda J_{y}^{\prime}$ is identically zero. Here I_{y}^{\prime} and J_{y}^{\prime} are the Fréchet derivatives of I and J at y. For the rest of the paper, we assume that y in H satisfies this necessary condition.

A common misapprehension (upon which much of the stability results for capillary surfaces has been based) is to assume that if the quadratic form $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ is positive definite on the kernel of J_{y}^{\prime} then I has a local constrained minimum at y. This is not correct in a Hilbert space of infinite dimension; Finn [1] has supplied a counterexample in the unconstrained case, and the same difficulty will occur in the constrained case. In the unconstrained case, if (as often occurs in practice) the spectrum of $I_{y}^{\prime \prime}$ is discrete and 0 is not a cluster point of the spectrum, then $I_{y}^{\prime \prime}$ positive definite at a critical point y implies that $I_{y}^{\prime \prime}$ is strongly positive, (i.e., there exists $k>0$ such that $I_{y}^{\prime \prime}(x) \geq k\|x\|^{2}$ holds for all x, and this in turn does imply that y is a local minimum (see [2]). However, in the constrained case, things are not so easy. Even if $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ has a nice spectrum (in some sense), it is not clear that $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ being positive definite on the kernel of J_{y}^{\prime} implies that this quadratic form is strongly positive on the kernel, nor that strong positivity implies that y is a local minimum.

In [3], Maddocks obtained sufficient conditions for $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ to be positive definite on the kernel of J_{y}^{\prime}. As Maddocks points out, this is not quite enough to say that I has a constrained minimum at y. Remarkably, essentially the same conditions as Maddocks obtained for positive definiteness do in fact imply that I has a strict local minimum at y subject to the constraint $J=J(y)$, as we shall see.

For any $h \in H$ we may say $J(y+h)-J(y)=J_{y}^{\prime}(h)+\frac{1}{2} J_{y}^{\prime \prime}(h)+\epsilon_{1}(h)\|h\|^{2}$, where ϵ_{1} goes to zero as $\|h\|$ goes to zero. If we consider an h for which $J(y+h)=J(y)$, then of course $0=J_{y}^{\prime}(h)+\frac{1}{2} J_{y}^{\prime \prime}(h)+\epsilon_{1}(h)\|h\|^{2}$. Now, for

