A UNIQUENESS THEOREM FOR THE MINIMAL SURFACE EQUATION

Jenn-Fang Hwang

In 1991, Collin and Krust proved that if u satisfies the minimal surface equation in a strip with linear Dirichlet data on two sides, then u must be a helicoid. In this paper, we give a simpler proof of this result and generalize it.

1. Introduction.

Let $\Omega_{\alpha} \subset \mathbb{R}^{2}$ be a sector domain with angle $0<\alpha<\pi$. Consider the minimal surface equation

$$
\begin{equation*}
\operatorname{div} T u=0 \tag{1}
\end{equation*}
$$

where $T u=\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}$ and ∇u is the gradient of u. In 1965, Nitsche [7] announced the following results:
(1) Given a continuous function f on $\partial \Omega_{\alpha}$, there always exists a solution u which satisfies the minimal surface equation in Ω_{α} with Dirichlet data f on $\partial \Omega_{\alpha}$;
(2) If u satisfies the minimal surface equation with vanishing boundary value in Ω_{α}, then $u \equiv 0$.
Nitsche thus raised the following question: Let $\Omega \subset \Omega_{\alpha}$ and let f be an arbitrary continuous function on $\partial \Omega$. If the Dirichlet problem

$$
\begin{cases}\operatorname{div} T u=0 & \text { in } \Omega \\ u=f & \text { on } \partial \Omega\end{cases}
$$

has a solution, is it unique?
We notice that similar questions for higher dimensions are raised in [6]. Results in this direction were obtained by Miklyukov [5] and Hwang [4] independently, in which the following result was established:

Theorem 1. Let $\Omega \subset \mathbb{R}^{2}$ be an unbounded domain and let $u, v \in C^{2}(\Omega) \cap$ $C^{0}(\bar{\Omega})$. For every $R>0$, set $B_{R}=\left\{x \in \mathbb{R}^{2}| | x \mid<R\right\}$ and $\Gamma_{R}=\partial\left(\Omega \cap B_{R}\right) \cap$

