A UNIQUENESS THEOREM FOR THE MINIMAL SURFACE EQUATION

JENN-FANG HWANG

In 1991, Collin and Krust proved that if u satisfies the minimal surface equation in a strip with linear Dirichlet data on two sides, then u must be a helicoid. In this paper, we give a simpler proof of this result and generalize it.

1. Introduction.

Let $\Omega_{\alpha} \subset \mathbb{R}^2$ be a sector domain with angle $0 < \alpha < \pi$. Consider the minimal surface equation

(1)
$$\operatorname{div} Tu = 0$$

where $Tu = \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}$ and ∇u is the gradient of u. In 1965, Nitsche [7] announced the following results:

- (1) Given a continuous function f on $\partial \Omega_{\alpha}$, there always exists a solution u which satisfies the minimal surface equation in Ω_{α} with Dirichlet data f on $\partial \Omega_{\alpha}$;
- (2) If u satisfies the minimal surface equation with vanishing boundary value in Ω_{α} , then $u \equiv 0$.

Nitsche thus raised the following question: Let $\Omega \subset \Omega_{\alpha}$ and let f be an arbitrary continuous function on $\partial \Omega$. If the Dirichlet problem

$$\begin{cases} \operatorname{div} Tu = 0 & \text{ in } \Omega, \\ u = f & \text{ on } \partial \Omega \end{cases}$$

has a solution, is it unique?

We notice that similar questions for higher dimensions are raised in [6]. Results in this direction were obtained by Miklyukov [5] and Hwang [4] independently, in which the following result was established:

Theorem 1. Let $\Omega \subset \mathbb{R}^2$ be an unbounded domain and let $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$. For every R > 0, set $B_R = \{x \in \mathbb{R}^2 \mid |x| < R\}$ and $\Gamma_R = \partial(\Omega \cap B_R) \cap$