STABLE RELATIONS II: CORONA SEMIPROJECTIVITY AND DIMENSION-DROP C^* -ALGEBRAS

TERRY A. LORING

We prove that the relations in any presentation of the dimension-drop interval are stable, meaning there is a perturbation of all approximate representations into exact representations. The dimension-drop interval is the algebra of all M_n -valued continuous function on the interval that are zero at one end-point and scalar at the other. This has applications to mod-p K-theory, lifting problems and classification problems in C^* -algebras. For many applications, the perturbation must respect precise functorial conditions. To make this possible, we develop a matricial version of Kasparov's technical theorem.

1. Introduction.

Suppose \mathcal{R} is a finite set of relations on a finite set G of generators so that $C^*\langle G|\mathcal{R}\rangle$ is isomorphic to the dimension-drop interval

$$\tilde{\mathbb{I}}_n = \{ f \in C[0,1] \mid f(0), f(1) \in \mathbb{C}I \}.$$

For simplicity, we assume the relations are of the form $p(g_1, \ldots, g_n) = 0$ for some *-polynomial p. Weak stability means that an approximate representation (x_1, \ldots, x_n) , meaning an n-tuple of elements in a C^* -algebra A such that each $p(x_1, \ldots, x_n)$ is close zero, can be perturbed slightly within A to an actual representation $(\tilde{x}_1, \ldots, \tilde{x}_n)$. That this (and a little more) can be done was shown in [8], but only for one specific set of relations. The relations \mathcal{R} are stable if the pertubation can be done so that whenever there is a *-homomorphism $\varphi: A \to B$ which sends (x_1, \ldots, x_n) to an exact representation, then $\varphi(\tilde{x}_j) = \varphi(x_j)$.

There are several advantages to stability over weak stability. It is far more useful when dealing with extensions of C^* -algebras and it depends only on the universal C^* -algebra, not the choice of relations for that C^* -algebra. The reason for our focus on the dimension-drop interval is primarily that this is the most complicated building block used in the inductive limits, called AD algebras, that appeared in Elliott's first classification paper [7].