STABLE RELATIONS II: CORONA SEMIPROJECTIVITY AND DIMENSION-DROP C^{*}-ALGEBRAS

Terry A. Loring

Abstract

We prove that the relations in any presentation of the dimension-drop interval are stable, meaning there is a perturbation of all approximate representations into exact representations. The dimension-drop interval is the algebra of all M_{n}-valued continuous function on the interval that are zero at one end-point and scalar at the other. This has applications to mod- $p K$-theory, lifting problems and classification problems in C^{*}-algebras. For many applications, the perturbation must respect precise functorial conditions. To make this possible, we develop a matricial version of Kasparov's technical theorem.

1. Introduction.

Suppose \mathcal{R} is a finite set of relations on a finite set G of generators so that $C^{*}\langle G \mid \mathcal{R}\rangle$ is isomorphic to the dimension-drop interval

$$
\tilde{\mathbb{I}}_{n}=\{f \in C[0,1] \mid f(0), f(1) \in \mathbb{C} I\} .
$$

For simplicity, we assume the relations are of the form $p\left(g_{1}, \ldots, g_{n}\right)=0$ for some *-polynomial p. Weak stability means that an approximate representation $\left(x_{1}, \ldots, x_{n}\right)$, meaning an n-tuple of elements in a C^{*}-algebra A such that each $p\left(x_{1}, \ldots, x_{n}\right)$ is close zero, can be perturbed slightly within A to an actual representation ($\tilde{x}_{1}, \ldots, \tilde{x}_{n}$). That this (and a little more) can be done was shown in [8], but only for one specific set of relations. The relations \mathcal{R} are stable if the pertubation can be done so that whenever there is a $*$-homomorphism $\varphi: A \rightarrow B$ which sends $\left(x_{1}, \ldots, x_{n}\right)$ to an exact representation, then $\varphi\left(\tilde{x}_{j}\right)=\varphi\left(x_{j}\right)$.

There are several advantages to stability over weak stability. It is far more useful when dealing with extensions of C^{*}-algebras and it depends only on the universal C^{*}-algebra, not the choice of relations for that C^{*}-algebra. The reason for our focus on the dimension-drop interval is primarily that this is the most complicated building block used in the inductive limits, called AD algebras, that appeared in Elliott's first classification paper [7].

