Note on the dimension of modules and algebras

By Manabu HARADA

(Received March 10, 1956)

Let Λ be a ring with unit element. The left dimension (notation: $l. \dim \Lambda A$), the left injective dimension ($l. inj. \dim \Lambda A$) and the left weak dimension (w. l. dim ΛA) for left Λ -modules and the left global dimension ($l. gl. \dim \Lambda$) and the global weak dimension (w. gl. dim Λ) of Λ are those defined in [3].

Len Λ and I' be rings and ψ a ring homomorphism of Λ to I'. Then each left Γ -module Λ may be regarded as a left Λ -module, by setting, for $\lambda \in \Lambda$ $a \in \Lambda$

$$\lambda \cdot a = \psi \lambda \cdot a$$

If Γ is Λ -projective in this sence, the following inequalities are shown in [3]; l. dim $\Lambda A \leq l$. dim rA, w. 1. dim $\Lambda A \leq w$. 1. dim rA and 1. inj. dim $\Lambda A \leq l$. inj. dim rA for left Γ -madules A.

M. Auslander [1] has shown that l. gl. dim $\Lambda = \sup l. \dim \Lambda/l$ where l ranges over all left ideals of Λ and obtained some relations among l. gi. dim Λ_1 , l. gl. dim Λ_2 and l. gl. dim $\Lambda_1 \otimes \Lambda_2$ in the special cases where Λ_1 and Λ_2 are algebras over a field K.

If \mathfrak{A} is a two-sided ideal in Λ , there is in general very little relation between l. gl. dim Λ and l. gl. dim (Λ/\mathfrak{A}) ; it was however proved in Elenberg-Nagao-Nakayama [6] that if l. gl. dim $\Lambda \leq 1$ and Λ is semi-primary, then gl. dim $(\Lambda/\mathfrak{A}) < \infty$.

Now, we show in section 1 of the present note that for each left Λ -module A we have $\lim \Lambda A = \lim \dim \Lambda_n A^n$, w.l. dim $\Lambda A = w$.l. dim $\Lambda_n A^n$ and l. inj. dim $\Lambda A = 1$. inj. dim $\Lambda_n A^n$ and conversely, for each left Λ_n -module A, l. dim $\Lambda A = 1$. dim $\Lambda_n A$ and so on, where Λ_n is the total matrix ring of order n over Λ . Hence, as the special case of $\Lambda_1 \otimes \Lambda_2$ we obtain l. gl. dim $\Lambda = 1$. gl. dim Λ_n and w. gl. dim Λ = w. gl. dim Λ_n for any ring Λ and further if Λ is an algebra over a commutative ring K, we obtain dim $\Lambda = \dim \Lambda_n$.

In section 2 we show that the analogous theorem to Auslander's is valid for w. gl. dim Λ and some characterization of ring Λ with w. gl. dim $\Lambda \leq n$ or l. gl. dim $\Lambda \leq n$ $(n \geq 1)$. In section 3, we assume that ψ is a ring homomorphism of Λ to Γ and 1. dim $\Lambda \Gamma = 0$ or r. dim $\Lambda \Gamma = 0$, then we obtain some relations between the dimensions of Λ and Γ , regarding Γ -modules Λ as Λ -modules. In particular, if two sided ideal \mathfrak{A} is equal to Λe or $e\Lambda$ $(e=e^2)$, we obtain l. gl. dim $\Lambda \geq 1$. gl. dim (Λ/\mathfrak{A}) and w. gl. dim $\Lambda \geq$ w. gl. dim (Λ/\mathfrak{A}) .