PERIODIC SOLUTIONS OF A TWO-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

CHUNG-CHENG KUO*

(Received May 12, 1997)

1. Introduction

We consider the periodic boundary value problem

(1.1)
$$u'' + f(u)u' + g(x, u) = h \text{ in } (0, 2\pi), \\ u(0) - u(2\pi) = u'(0) - u'(2\pi) = 0,$$

where $h \in L^1(0, 2\pi)$ is given, $f : \mathbf{R} \to \mathbf{R}$ is a continuous function and $g : (0, 2\pi) \times \mathbf{R} \to \mathbf{R}$ is a Caratheodory function. That is, g(x, u) is continuous in $u \in \mathbf{R}$ for a.e. $x \in (0, 2\pi)$, is measurable in $x \in (0, 2\pi)$ for all $u \in \mathbf{R}$ and satisfies for each r > 0, there exists $a_r \in L^1(0, 2\pi)$ such that

$$(1.2) |g(x,u)| \le a_r(x)$$

for a.e. $x \in (0, 2\pi)$ and all $|u| \le r$. Concerning the growth condition of the nonlinear term g, we assume that either

(H) There exist a constant $r_0 > 0$, and $a, b, c, d \in L^1(0, 2\pi)$, $a, b \ge 0$ and $a(x) \le 1$ for a.e. $x \in (0, 2\pi)$ with strict inequality on a positive measurable subset of $(0, 2\pi)$, such that for a.e. $x \in (0, 2\pi)$ and all $u \ge r_0$

$$c(x) \le g(x, u) \le a(x)|u| + b(x),$$

and for a.e. $x \in (0, 2\pi)$ and all $u \le -r_0$

$$-a(x)|u|-b(x) \le g(x,u) \le d(x);$$

or

(G) There exist a constant $r_0 \ge 0$, and $a, b, c, d \in L^1(0, 2\pi)$, $a, b \ge 0$ and $a(x) \le 1/4$ for a.e. $x \in (0, 2\pi)$ with strict inequality on a positive measurable subset of $(0, 2\pi)$, such that for a.e. $x \in (0, 2\pi)$ and all $u \ge r_0$

$$c(x) \leq g(x, u),$$

^{*}Research supported in part by the National Science Council of R.O.C.