Wen, Z.-X. and Wen, Z.-Y. Osaka J. Math. **34** (1997), 673–679

STRUCTURE OF A CLASS OF POLYNOMIAL MAPS WITH INVARIANT FACTORS

ZHI-XIONG WEN and ZHI-YING WEN

(Received May 23, 1996)

Let $\mathbf{R}[x_1, \dots, x_n]$ be a ring of polynomials of $n \ (n \ge 3)$ indeterminates with coefficients in \mathbf{R} .

Let $\phi = (\phi_1, \dots, \phi_n) \in (\mathbf{R}[x_1, \dots, x_n])^n$ be a polynomial map from \mathbf{R}^n to \mathbf{R}^n . Let $x = (x_1, x_2, \dots, x_n)$ and define

$$\lambda_{n,a}(x) := \sum_{i=1}^{n} x_i^2 - a \prod_{i=1}^{n} x_i \in \mathbf{R}[x_1, x_2, \dots, x_n].$$

where $a \ (\neq 0) \in \mathbf{R}$. We will write λ in stead of $\lambda_{n,a}$ if no confusion happens. $\lambda_{n,a}$ is called an invariant factor of ϕ if

(1)
$$\lambda_{n,a} \circ \phi = \lambda_{n,a}.$$

Now let

$$G_{n,a} = \{\phi; \phi \in (\mathbf{R}[x_1, \dots, x_n])^n, \lambda_{n,a} \circ \phi = \lambda_{n,a}\},\$$

that is, $G_{n,a}$ is the set of polynomial maps of which invariant factor is $\lambda_{n,a}$. The main aim of this note is to determine the structure of $G_{n,a}$.

Let $\Omega_{n,a} = \{x \in \mathbf{R}; \lambda_{n,a}(x) = 0\}$. Then by the equality (1), for any $n \in \mathbf{N}$,

$$\phi^n(\Omega_{n,a}) \subset \Omega_{n,a},$$

that is, $\Omega_{n,a}$ is an invariant variety of ϕ^n , where ϕ^n denotes n-th iteration of ϕ (see [3]). By using this property, we may investigate the asymptotic dynamical behaviours of iterations of ϕ ([1, 2, 3]). We are led naturally to study the structure of $G_{n,a}$. In fact, we will prove first that $G_{n,a}$ is a group, then we will determine the generators of the group.

In the case n = 3, we have showed the following:

Theorem 1 ([2]). With the notations above, $G_{3,1} = \langle \tau_1, \tau_2, \tau_3, \tau_4 \rangle$ is a group generated by $\tau_1(x, y, z) = (y, x, z)$, $\tau_2(x, y, z) = (z, y, x)$, $\tau_3(x, y, z) = (-x, -y, z)$, $\tau_4(x, y, z) = (x, y, xy - z)$.