THE MODULI SPACE OF BRANCHED SUPERMINIMAL SURFACES OF A FIXED DEGREE, GENUS AND CONFORMAL STRUCTURE IN THE FOUR - SPHERE

QUO-SHIN CHI and XIAOKANG MO

(Received March 3, 1995)

0. Introduction

Minimal immersions from a Riemann surface M into S^n were studied by Calabi ([3]) and Chern ([4]), among many authors. To each such immersion F in S^4 , they found a holomorphic quartic form Q_F (to be defined in Section 1) on M. A superminimal immersion is one for which $Q_F=0$, which is always the case when $M=S^2$. In [2], Bryant studied a superminimal immersion of a higher genus into S^4 by lifting it to CP^3 , the twistor space of S^4 . The lift of a superminimal immersion, which is holomorphic curve, of the same degree as that of the immersion, which is horizontal with respect to the twistorial fibration; more precisely, it is a holomorphic curve in CP^3 satisfying the differential equation $z_0dz_1-z_1dz_0 + z_2dz_3 - z_3dz_2 = 0$. Setting $z_0 = 1$, $z_1 + z_2z_3 = f$ and $z_2 = g$, one can solve z_1 , z_2 , z_3 in terms of the meromorphic functions f and g, which serves as a kind of "Weierstrass representation". Via this representation, Bryant showed the existence of a superminimal immersion from any compact Riemann surface into S^4 . However, his existence result does not specify the degree d of the immersion, which is the simplest global invariant of the surface.

In Loo ([12]) and Verdier ([17), $f_1 = z_1/z_0$ and $f_2 = z_3/z_2$ were chosen in place of the aforementioned f and g. Generically, f_1 and f_2 are of degree d which satisfy $\operatorname{ram}(f_1) = \operatorname{ram}(f_2)$, where $\operatorname{ram}(f)$ denotes the ramification divisor of the meromorphic function f. This gives a scheme of constructing the moduli space of all branched superminimal surfaces in S^4 with a fixed degree d. For $M = S^2$, Loo ([12]) showed that the moduli space is connected and has dimension 2d+4; Verdier ([17]) in addition pointed out that the moduli space has three irreducible components.

In this paper, we propose to carry the investigation over to higher genera. Let $F: M \to S^4$ be a superminimal immersion of degree d and let $\tilde{F}: M \to CP^3$ be its horizontal lift. Let L_F be the pullback bundle via \tilde{F} of the hyperplane bundle of CP^3 . We may regard z_0, \dots, z_3 as four sections in $H^0(L_F)$ without common zeros. Now there is a natrual map $\mathcal{R}am$ which sends the 1-dimensional linear system $\langle z_0, z_1 \rangle$ (called a g_d^1), i.e., the plane spanned by z_0 , z_1 in the Grassmann manifold $G(2, H^0(L))$ of two-planes is $H^0(L_F)$, to the zero divisor of $z_0 dz_1 - z_1 dz_0$