# FAMILIES OF SMOOTH $k$-GONAL CURVES WITH ANOTHER FIXED PENCIL 

Edoardo BALLICO and Changho KEEM

(Received September 4, 1995)

## 0. Introduction

The actors of this paper are the same as the ones in [3], but the problems and methods are completely different (empty intersection). The actors are smooth curves, $C$, with 2 fixed pencils, say a $g_{k}^{1}$ and a $g_{b}^{1}$, which do not exist on curves with general moduli and that induce a birational morphism from $C$ to a curve $Y$ on a quadric surface $Q:=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, Y$ of bidegree $(k, b)$. Indeed, while in [3] we studied a fixed such $C$, here we will study suitable families of such curves $C$.

In this paper we will work always in characteristic 0 . In the first section we will prove (using very strongly [10]) the following result.

Theorem 0.1. For all integers $k, b, n$ with $0 \leq n \leq b k-b-k+1$ and either $k \geq 4$ and $b \geq 10$ or $k \geq 5$ and $b \geq 8$, the smooth scheme $W((k, b), n)$ parametrizing the set of all nodal irreducible curves in $Q$ of bidegree $(k, b)$ and with geometric genus $g:=b k-b-k+1-n$ is irreducible.

This theorem shows the power of the method introduced in [10] and refined very much in [11].

In the second section we will give a first step toward the Brill-Noether theory of special divisors on the general such curve $C$ with as image $Y \subset Q$ a nodal curve, i.e. a curve $Y \in W((k, b), n)$. Remenber that such a Brill-Noether theory is still in its infancy for curves not with general moduli. For interesting results for the case of general $k$-gonal curves, see [6] and [2]. In section 2 we will prove the following Brill-Noether type result.

Theorem 0.2. Fix integers $g, k, b, r, d$ with $r \geq 2,4 \leq k \leq b, 2 k-2 \leq g \leq$ $b k-b-k+1,(r+1) d<r(2 k+r-1)$. Let $S(g ; k, b)$ be the constructible subset of the moduli space $M_{g}$ of smooth curves of genus $g$ parametrizing the curves, $C$, with a fixed pair of pencils, the first of degree $k$ and the second of degree $b$, inducing $a$ birational morphism from $C$ onto a curve $Y \subset Q:=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Then $S(g ; k, b)$ is irreducible and a general $C \in S(g ; k, b)$ has no $g_{d}^{r}$, only finitely many $g_{k}^{1}$ and no $g_{m}^{1}$ with $m<k$. Furthermore, $C$ has Clifford index $k-2$.

