Nishio, M. Osaka J. Math. 29 (1992), 531-538

UNIQUENESS OF POSITIVE SOLUTIONS OF THE HEAT EQUATION

Dedicated to Professor Masanori Kishi on his 60th birthday

MASAHARU NISHIO

(Received July 5, 1991)

1. Introduction

Let D be an unbounded domain in \mathbb{R}^2 and u a nonnegative solution of the heat equation on D. We consider the property (U) for D:

(U): $u = 0 \text{ on } \partial_{v} D \Rightarrow u = 0 \text{ on } D$,

where $\partial_{p}D$ is the parabolic boundary of *D*. In the case of $D = \mathbf{R} \times (0, T)$ or $(0, \infty) \times (0, T)$, it is known that the property (U) holds (see [6]).

In this paper, by using a special form of the boundary Harnack principle, we shall show the following generalization.

Theorem. For $T \in (-\infty, \infty]$ and an upper semicontinous function φ on \mathbf{R} , we set

$$D(\varphi, T) = \{(x, t); \varphi(x) < t < T\}$$
.

If φ is bounded below, then the property (U) holds for $D(\varphi, T)$.

By Theorem we obtain the following

Corollary. Let φ , T and $D(\varphi, T)$ be as in Theorem, and assume that φ is bounded below. Let u, v be positive solutions of the heat equation on $D(\varphi, T)$. If u-v vanishes continuously on $\partial_{\varphi}D(\varphi, T)$, then u=v on $D(\varphi, T)$.

On the other hand, for $D = \{(x, t); mt < x\}$, the property (U) does not hold (see Lemma 7, Proposition 2). By using the Appell transformation, we shall show that this is critical (see Proposition 1).

2. Preliminaries

For a domain D in \mathbb{R}^2 we denote by $\partial_p D$ the set of $(x, t) \in \partial D$ (the boundary of D) satisfying $V \cap D \cap (\mathbb{R} \times (t, \infty)) \neq \emptyset$ for every neighborhood V of (x, t) and call it the parabolic boundary of D. For $X=(x, t) \in D$, we denote by ω_p^X