THE K_{*}-LOCALIZATIONS OF WOOD AND ANDERSON SPECTRA AND THE REAL PROJECTIVE SPACES ZEN-ICHI YOSIMURA (Received May 9, 1991) ## 0. Introduction Let E be an associative ring spectrum with unit. For any CW-spectra X and Y we say that X is quasi E_* -equivalent to Y (see [15] or [16]) if there exists a map $f\colon Y\to E_\wedge X$ such that the composite map $(\mu_\wedge 1)(1_\wedge f)\colon E_\wedge Y\to E_\wedge X$ is an equivalence where $\mu\colon E_\wedge E\to E$ denotes the multiplication of E. Let KO, KU and KT be the real, the complex and the self-conjugate K-spectrum respectively (see [3] or [7]). It is known that there is no difference among the KO_* -, KU_* - and KT_* -localizations ([11], [5] or [13]). So we denote by S_K the K_* -localization of the sphere spectrum $S=\Sigma^0$. These spectra KO, KU, KT and S_K are all associative ring spectra with unit. In [15] we studied the quasi K_* -equivalences, especially the quasi KO_* -equivalence, and in [16] and [17] we determined the quasi KO_* -types of the real projective spaces RP^n and the stunted real projective spaces RP^n/RP^m . In this note we will be interested in the quasi S_{K_*} -equivalence in advance of the quasi KO_* -equivalence. According to the smashing theorem [6, Corollary 4.7] (or [13]), for any CW-spectrum X the smash product $S_{K \wedge} X$ is actually the K_* -localization of X. Hence we notice that two CW-spectra X and Y have the same K_* -local type if and only if X is quasi S_{K_*} -equivalent to Y. For any map $f: X \to Y$ its cofiber is usually denoted by C(f). Let $\eta: \Sigma^1 \to \Sigma^0$ be the stable Hopf map of order 2. The KO-homologies of the cofibers $C(\eta)$ and $C(\eta^2)$ are well known as follows: $KO_iC(\eta) \cong \pi_i KU \cong Z$ or 0 according as i is even or odd, and $KO_iC(\eta^2) \cong \pi_i KT \cong Z$, Z/2, 0 or Z according as $i \equiv 0, 1, 2$ or 3 mod 4. A CW-spectrum X is said to be a Wood spectrum if it is quasi KO_* -equivalent to the cofiber $C(\eta)$, and an Anderson spectrum if it is quasi KO_* -equivalent to the cofiber $C(\eta^2)$ (see [12], [15] or [18]). Let $\bar{\eta}: \Sigma^1 SZ/2 \to \Sigma^0$ and $\tilde{\eta}: \Sigma^2 \to SZ/2$ be an extension and a coextension of η with $\bar{\eta}i = \eta$ and $j\tilde{\eta} = \eta$, where SZ/2 denotes the Moore spectrum of type Z/2 constructed by the cofiber sequence $\Sigma^0 \to \Sigma^0 \to SZ/2 \to \Sigma^1$. Choose two maps $\bar{h}: \Sigma^3 SZ/2 \to C(\bar{\eta})$ and $\bar{k}: \Sigma^5 SZ/2 \to C(\bar{\eta})$ with $\bar{j}\bar{h} = \bar{\eta}j$ and $\bar{j}\bar{k} = \bar{\eta}\bar{\eta}$ where $\bar{j}: C(\bar{\eta}) \to \Sigma^2 SZ/2$ denotes the bottom cell collapsing. Using a fixed Adams' K_* -equiva-