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0. Introduction

In this note we consider fibrations of the form F—E —B where all spaces
involved have the homotopy type of pointed connected CW-complexes. Well-
known work on the plus-construction (for algebraic K-theory, et al) reveals the
following situation concerning when E— B induces an isomorphism of homology
groups with trivial integer coefficients.

Theorem 0.1 [4]. The following are equivalent.
(i) Fis acyclic;
(il) Hy(E)—Hy(B) is an isomorphism, and m(B) acts trivially on Hy(F).

We focus here on a dual problem of when Hy(F)—Hy(E) can be an iso-
morphism. In general, mere acyclicity of B does not suffice, as evidenced by
the following.

ExampLE 0.2. Let Re>—Fr—>G be a free presentation of a finitely generat-
ed acyclic group G, with Fr of finite rank. By passing to classifying spaces we
obtain a fibration as in the first sentence above. If G is non-trivial, then it is
well-known that the rank of Re and H(Re) exceeds that of Fr and H(Fr)
[13 1 §3].

Here is the counterpart to Theorem 0.1.

Theorem 0.3 [8]. The following are equivalent.
(i) B is acyclic, and 7\(B) acts trivially on Hy(F);
(ii) Hy(F)—Hx(E) is an isomorphism.

However we shall now show how it is possible to remove the hypothesis
of trivial fundamental group action (orientability) in favourable circumstances.
We thereby derive assumptions under which acyclicity of B implies that
Hy(F)—>Hy(E) is an isomorphism for all fibrations involving the given F, E and
B. The price is a further condition, either on B or on F. For the former ap-



