Takahashi, Y. Osaka J. Math. 27 (1990), 373-379

AN INTEGRAL REPRESENTATION ON THE PATH SPACE FOR SCATTERING LENGTH

Dedicated to Professor N. Ikeda on the occasion of his sixtieth birthday

YOICHIRO TAKAHASHI

(Received June 22, 1989)

0. The scattering length Γ is the limit of the scattering amplitude $f_k(e, e')$ as the wave number k tends to 0. It is independent of the choice of unit 3-vectors e and e'. The scattering amplitude is defined as the unique constant $f_k(e, e')$ such that there holds the asymptotics

$$\phi_k(x) \sim e^{ik\langle u, e \rangle} + f_k(e, e') e^{ik\langle u, e' \rangle} / |x| \quad \text{as} \quad |x| \to \infty \quad \left(e' = \frac{x}{|x|}\right)$$

for a solution ϕ_k , called the *scattering solution*, of the equation

$$\Delta \phi_k - v \phi_k = -k^2 \phi_k$$
 ,

where v is a given potential which is assumed to be nonnegative and integrable. As M. Kac proved,

(1)
$$\Gamma = \frac{1}{2\pi} \int_{\mathbf{R}^3} v(x) \phi_0(x) dx$$

where $\phi_0(x)$ is the solution of

(2)
$$\phi_0(x) = 1 - \frac{1}{2\pi} \int_{\mathbf{R}^3} \frac{v(y) \phi_0(y)}{|x-y|} \, dy \, .$$

In [4], M. Kac gave the formula

(3)
$$\Gamma = \frac{1}{2\pi} \lim_{t \to \infty} \frac{1}{t} \int_{\mathbf{R}^3} E_x[1 - \exp\left(-\int_0^t v(w(s))\,ds\right)] \,dx$$

where E_x denotes the expectation with respect to the three dimensional Brownian motion starting at x. He conjectured that

(C1) the scattering length $\Gamma = \Gamma(\alpha v)$ for the potential αv has limit as α goes to infinity and

(C2) the limit, say γ_{v} , is independent of the choice of potential v and depends only on the support $U = \{x; v(x) > 0\}$.

The purpose of the present note is to prove the conjecture C1-2 by giving an integral representation of the scattering length $\Gamma(v)$ on the path space W,