FREDHOLM DETERMINANT FOR PIECEWISE LINEAR TRANSFORMATIONS

Makoto MORI

(Received September 14, 1988)
(Revised August 4, 1989)

1. Introduction

Let F be a piecewise linear transformaion from a finite union of bounded intervals I into itself and P be the Perron-Frobenius operator assoicated with it. Since F is piecewise smooth, P can be expressed as

$$
P f(x)=\sum_{y: Y(y)=x} f(y)\left|F^{\prime}(y)\right|^{-1} \quad \text { a.e.x }
$$

for $f \in L^{1}$, the set of all Lebesgue integrable functions on I. In this paper, we assume that

$$
\begin{equation*}
\xi=\underset{x \in I}{\operatorname{essinf}} \liminf _{n \rightarrow \infty} n^{-1} \log \left|F^{n \prime}(x)\right|>0 \tag{1}
\end{equation*}
$$

We call the number ξ the lower Lyapunov number. We will study $\operatorname{Spec}(F)$, the spectrum of $\left.P\right|_{B V}$, the restriction of P to the subspace $B V$ of functions with bounded variation. The generating function of P is determined by the orbits of the division points of the partition, and the orbits are characterized by a finite dimensional matrix $\Phi(z)$ which is defined by a renewal equation (§3). Hence, we can show that $D(z)=\operatorname{det}(I-\Phi(z))$, which we call a Fredholm determinant, is the determinant of $I-z P=\sum_{n=0}^{\infty} z^{n} P^{n}$ in the following sense:

Theorem A. Let $\lambda \in C$ and assume that $|\lambda|>e^{-\xi}$. Then λ belongs to $\operatorname{Spec}(F)$ if and only if $z=\lambda^{-1}$ is a zero of $D(z)$:

$$
D\left(\lambda^{-1}\right)=0
$$

Furthermore, such λ is an eigenvalue of $\left.P\right|_{B V}$.
We can calculate the eigenvalues of $\left.P\right|_{B V}$ concretely by this theorem. Some examples are shown in §6. Also we can prove the following intrinsic characterization of the power series $D(z)$ from a detailed re-examination of the renewal equation. Let us denote the following Ruelle-Artin-Mazur zeta function by $\zeta(z)$:

