Mori, M. Osaka J. Math. 27 (1990), 81–116

FREDHOLM DETERMINANT FOR PIECEWISE LINEAR TRANSFORMATIONS

MAKOTO MORI

(Received September 14, 1988) (Revised August 4, 1989)

1. Introduction

Let F be a piecewise linear transformation from a finite union of bounded intervals I into itself and P be the Perron-Frobenius operator associated with it. Since F is piecewise smooth, P can be expressed as

$$Pf(x) = \sum_{y: F(y)=x} f(y) |F'(y)|^{-1}$$
 a.e.x

for $f \in L^1$, the set of all Lebesgue integrable functions on *I*. In this paper, we assume that

(1)
$$\xi = \operatorname{essinf}_{x \in I} \liminf_{n \to \infty} n^{-1} \log |F^{n'}(x)| > 0.$$

We call the number ξ the lower Lyapunov number. We will study Spec(F), the spectrum of $P|_{BV}$, the restriction of P to the subspace BV of functions with bounded variation. The generating function of P is determined by the orbits of the division points of the partition, and the orbits are characterized by a finite dimensional matrix $\Phi(z)$ which is defined by a renewal equation (§ 3). Hence, we can show that $D(z) = \det(I - \Phi(z))$, which we call a Fredholm determinant, is the determinant of $I - zP = \sum_{n=0}^{\infty} z^n P^n$ in the following sense:

Theorem A. Let $\lambda \in C$ and assume that $|\lambda| > e^{-\xi}$. Then λ belongs to $\operatorname{Spec}(F)$ if and only if $z = \lambda^{-1}$ is a zero of D(z):

$$D(\lambda^{-1})=0.$$

Furthermore, such λ is an eigenvalue of $P|_{BV}$.

We can calculate the eigenvalues of $P|_{BV}$ concretely by this theorem. Some examples are shown in §6. Also we can prove the following intrinsic characterization of the power series D(z) from a detailed re-examination of the renewal equation. Let us denote the following Ruelle-Artin-Mazur zeta function by $\zeta(z)$: