ON DISORDER PROBLEM WITH POINT PROCESSES

MINORU YOSHIDA

(Received March 15, 1985)

0. Introduction

In this paper the following special optimal stopping problem called "disorder problem" is considered: on some probability space $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$ we are given an observable point process $(\xi_t)_{t\geq 0}$, and unobservable random variable Θ with values in \mathbf{R}_+ . The stochastic characteristics of $(\xi_t)_{t\geq 0}$ may change at the random moment of time Θ , the probability law of Θ is known, however its value can not be observed directly. The objective is to maximize the value $E[g(\Theta, \tau)]$ by selecting a stopping time τ that is adapted to $\{\sigma(\xi_s, s\leq t)\}_{t>0}$, for some given reward function g(s, t). This kind of problems are considered in [1], [2], [3], [7], [8] and [10]

In section 2 according to the general theorem for optimal stopping problems with continuous parameter processes posed by M.E. Thompson [9], we derive the form of an optimal stopping time and the maximum expected reward function. In section 3 we restrict ourselves to the case when the expected reward process forms a monotone process and we apply the theorem of A. Irle [4] to our problem, and then we derive a form of optimal stopping time. At the end of section 3 we consider a special example and fined an optimal stopping time explicitly.

1. Statement of problem and preliminaries

Consider a measurable space (X, \mathcal{B}) where X is a space of piecewise constant functions $x=(x_t)$, $t\geq 0$, such that $x_0=0$ and $x_t=x_{t-}+(0 \text{ or } 1)$, \mathcal{B} is a σ -algebra $\sigma\{x_s; s\geq 0\}$. On (X, \mathcal{B}) we are given complete probability measures μ^1 and μ^2 , which satisfy Assumption I given bellow, and they are absolutely continuous with respect to each other.

Let (\mathcal{B}_i) , $t \ge 0$, be an increasing family of right continuous sub σ -algebra of \mathcal{B} such that

$$\mathcal{B}_t = \bigcap_{\epsilon_{>0}} \sigma \{x_s; s \leq t + \varepsilon\} \vee Q$$
,

where

$$Q = \{A \mid \mu^{1}(A) = 0 \text{ or } \mu^{1}(A) = 1, A \in \mathcal{B}\}.$$