Im Hof, H.-C. and Ruh, E. A. Osaka J. Math. 19 (1982), 669-675

THE VANISHING OF COHOMOLOGY ASSOCIATED TO DISCRETE SUBGROUPS OF COMPLEX SIMPLE LIE GROUPS*

HANS-CHRISTOPH IM HOF AND ERNST A. RUH

(Received September 1, 1980)

1. Introduction

Let G denote a connected complex simple Lie group and K a maximal compact subgroup of G. The quotient M=G/K is a riemannian symmetric space of non-compact type. Let Γ denote a discrete subgroup of G with compact quotient $\Gamma \setminus G$, and let ρ denote an irreducible non-trivial complex representation of G in a finite dimensional complex vector space F. In this paper we prove that for such representations a certain quadratic form defined by Matsushima and Murakami [3] is positive definite, and hence $H^*(\Gamma, M, \rho)$ vanishes.

The motivation for this paper is a result of Min-Oo and Ruh [4] on comparison theorems for non-compact symmetric spaces, where an estimate from below for the first eigenvalue of the Laplace operator on 2-forms with values in a bundle associated to the adjoint representation is essential. This estimate is an immediate consequence of the positivity of the above quadratic form. The vanishing of $H^*(\Gamma, M, \rho)$, without the information on the first eigenvalue, is a special case of [1, Ch. VII, Th. 6. 7].

2. The result

Let g denote the Lie algebra of left-invariant vector fields of the simple Lie group G, $\rho: \mathfrak{g} \to \mathfrak{gl}(F)$ the representation induced by $\rho: G \to GL(F)$, and $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ a Cartan decomposition of \mathfrak{g} with \mathfrak{k} the Lie algebra of a maximal compact subgroup K. We identify the Lie algebra \mathfrak{g} with the corresponding vector fields on $\Gamma \setminus G$.

Let $A(\Gamma, M, \rho)$ $(A_0(\Gamma, M, \rho)$ in the notation of Matsushima and Murakami [3]) denote the vector space of *F*-valued differential forms on $\Gamma \setminus G$ which are horizontal and ad*K*-equivariant, i.e., $\eta \in A(\Gamma, M, \rho)$ satisfies $i_X \eta = 0$ and $\theta_X \eta = -\rho(X)\eta$ for all $X \in \mathfrak{k}$, where i_X is interior multiplication and θ_X is the Lie

^{*} This work was done under the program Sonderforschungsbereich "Theoretische Mathematik" (SFB 40) at the University of Bonn.