ON MODULES WITH EXTENDING PROPERTIES

Manabu HARADA

(Received May 15, 1980)

We have defined the extending property of uniform submodules and of direct sums of independent submodules in [5]. We also have studied modules with lifting property in [4].

In this note, we shall give results dual to those in [4] for the extending properties. Finally, we shall give the completely forms of modules with extending property of uniform submodules over a Dededind domain.

1 Definitions

Throughout this paper we assume that a ring R has the identity element and every module M is a unitary right R-module. We recall here defintions in [5].

If $\operatorname{End}_{R}(M)$ is a local ring, we call M a completely indecomposable. We denote the socle and an injective envelope of M by $S(M)$ and $E(M)$, respectively. Let $T=\sum_{K} \oplus T_{a}$. If a submodule L of T is contained in $\sum_{J} \oplus T_{a}$ for some finite subset J of K, we say L is finitely contained (briefly f.c.) (with respect to $\sum_{K} \oplus T_{a}$). It is clear that this defintion depends on the direct decomposition of T. We have studied a cyclic hollow module in [3]. We note that the concept dual to a cyclic hollow module is a uniform module with non-zero socle.

If a submodule N of M is essential in M, we indicate it by $M_{e} \supseteq N$. Let $\left\{C_{\gamma}\right\}_{I}$ be set of independent submodules with certain property $\left(^{*}\right)$. If there exists a set of independent submodules $\left\{N_{\gamma}\right\}_{I}$ such that $N_{\gamma_{e}} \supseteq C_{\gamma}$ for all $\gamma \in I$ and $\sum_{I} \oplus N_{\gamma}$ is a direct summand of M, we say the direct sum of $\left\{C_{\gamma}\right\}_{I}$ with $\left(^{*}\right)$ is essentially extended to a direct summand of M. If every direct sum of independent submodules with $\left(^{*}\right)$ is essentially extended to a direct summand of M, then we say M has the extending property of direct sums of independent submodules with $\left(^{*}\right)$. Especially, if $S(M)=\sum_{I} \oplus C_{\gamma}$ and $M=\sum_{I} \oplus N_{\gamma}$ in the above, we say M has the extending property of direct decompositions of $S(M)$. Next, we consider a case of $|I|(=$ the cardinal of $I)=1$. In this case we say M has the extending property of submodules with $\left(^{*}\right)$.

In order to get good results, we always assume T_{1} is completely indecomposable in the above when $|I|=1$ and C_{1} is uniform.

