Watanabe, A. Osaka J. Math. 18 (1981), 403-406

ON THE DEGREES OF IRREDUCIBLE REPRESENTATIONS **OF FINITE GROUPS**

ATUMI WATANABE

(Received November 29, 1979)

1. Introduction

Let G be a finite group of order |G| and F be an algebraically closed field of characteristic 0. Let T be an irreducible representation of G over F and d_{τ} be the degree of T. As is well know, d_T divides |G|. Furthermore there exists a sharper result due to Ito [2], namely, d_T divides the index in G of every abelian normal subgroup of G. Let s_T be the order of det T, that is, s_T is the smallest natural number such that $|T(x)|^{s_{T}}=1$ for all $x \in G$, where |T(x)| is the determinant of T(x). In Lemma of [4] we showed the first part of the following

Theorem 1. Let T be an irreducible representation of G over F. Then we have

(i) $d_T s_T |2|G|$, (ii) if d_T or s_T is odd then $d_T s_T ||G|$.

The second part follows from (i) by considering the 2-part of $d_T s_T$, since both d_T and s_T divide |G|.

The purpose of the present paper is to prove the following theorems.

Theorem 2. If G has an irreducible representation T over F with $d_{\tau}s_{\tau} \not\mid G \mid$, then the following holds.

(i) A 2-Sylow subgroup P of G is cyclic and $P \neq 1$. Hence G has the normal 2-complement K.

(ii) $C_{P}(K) = 1$.

(iii) T is induced from a representation of K.

The converse of Theorem 2 is also true:

Theorem 3. If G satisfies (i) and (ii) in Theorem 2, then G has an irreducible representation T with $d_T s_T \not\mid |G|$.

We also have the following

Theorem 4. Let T be an irreducible representation of G over F. Then we have