Numata, M. Osaka J. Math. 15 (1978), 311-342

GENERALIZATION OF A THEOREM OF PETER J. CAMERON

MINORU NUMATA

(Received October 29, 1976)

Peter J. Cameron [3] has shown that a primitive permutation group G has rank at most 4 if the stabilizer G_{α} of a point α is doubly transitive on all its nontrivial suborbits except one.

The purpose of this paper is to prove the following two theorems, one of which extends the Cameron's result.

Theorem 1. Let G be a primitive permutation group on a finite set Ω , and all nontrivial G-obrits in Cartesian product $\Omega \times \Omega$ be $\Gamma_1, \dots, \Gamma_s, \Delta_1, \dots, \Delta_i$, where G_{α} is doubly transitive on $\Gamma_i(\alpha) = \{\beta \mid (\alpha, \beta) \ni \Gamma_i\}, 1 \le i \le s$ and not doubly transitive on $\Delta_i(\alpha), 1 \le i \le t$. Suppose that G has no subdegree smaller than 4 and that t > 1. Then, we have

 $s \leq 2t - r$,

where $r = \# \{ \Delta_i | \Delta_i = \Gamma_j^* \circ \Gamma_j, 1 \leq j \leq s \}$. Moreover if r = 1, then we have

 $s \leq 2t - 2$.

(For the notation $\Gamma_j^* \circ \Gamma_j$, see the section 1)

Theorem 2. Under the hypothesis of Theorem 1, if r=t, then s=t=2, and G is isomorphic to the small Janko simple group and G_{α} is isomorphic to PSL(2, 11).

For the case of $t \ge 3$, I don't know the example satisfying the equality s=2t-r, and when r=1, the example satisfying the equality s=2t-2. I know only three examples with t=2 and s=2.

The small Janko simple group J_1 of order 175560 has a primitive rank 5 representation of degree 266 in which the stabilizer of a point is isomorphic to PSL (2, 11) and acts doubly transitively on suborbits of lengths 11 and 12; the other suborbit lengths are 110 and 132 (See Livingstone [7]). The Mathieu group M_{12} has a primitive rank 5 representation of degree 144 in which the stabilizer of a point is isomorphic to PSL (2, 11) and acts doubly transitively on two suborbits of length 11; the other suborbit lengths are 55 and 66 (See Cameron [4]).