A NOTE ON THE ORTHOGONAL GROUP OF A QUADRATIC MODULE OF RANK TWO OVER A COMMUTATIVE RING

TERUO KANZAKI

(Received April 24, 1973)

Let A be an arbitrary commutative ring with the identity element. This note will give an elementary property on the orthogonal group of a non-degenerate quadartic A-module of rank two. Throughout this paper, we will assume that (V, q) is a non-degenerate quadratic A-module such that V is a finitely generated projective A-module and $[V_m: A_m] = 2$ for all maximal ideal m of A. The Cilfford algebra C(V, q) is a quadratic extension of $C_0(V, q)$, the set of homogeneous elements of degree 0 in C(V, q), and $C_0(V, q)$ is a commutative and separable quadratic extension of A (cf. [3], [4]). Set $B = C_0(V, q)$. B is a Galois extension of A with a Galois group $G = \{I, \tau\}$, and τ is the unique A-algebra automorphism of B such that the fixed subring of B is A([4], [5]). By [3], V is an invertible B-bilmodule, and (V, ϕ) , $\phi: V \times V \rightarrow B$; $\phi(x, y) = xy$ in C(V, q) for $x, y \in V$, is a non-degenerate hermitian B-module ((2.4) in [3]). We denote by I(A) the set of idempotents in A, which is an abelian group with respect to the product *; e * e' = e + e' - 2ee' for $e, e' \in I(A)$. Then, by [1], the group Aut (B/A) of all A-algebra automorphisms of B is $\{e\tau + (1-e)I; e \in I(A)\}$, and is isomorphic to I(A) by the isomorphism μ : I(A) \rightarrow Aut (B/A); $e \iff \mu = e\tau + (1-e)I$. Let O(V, q) be the orthogonal group of (V, q), i.e. $O(V, q) = \{\rho \in \text{Hom}_A(V, V); q(\rho v)\}$ =q(v) and $\rho(V)=V$. For any $\rho \in O(V,q)$, ρ is extended to an A-algebra automorphism $\tilde{\rho}$ of C(V, q) which induces an automorphism of B. Accordingly, there exists a group homorphism $\eta: O(V,q) \rightarrow I(A); \rho \iff \mu^{-1}(\rho \mid B)$. We put $O^+(V,q)$ $= \{ \rho \in O(V, q); \rho \mid B = I \}$ and $O^{-}(V, q) = \{ \rho \in O(V, q); \rho \mid B \neq I \}.$

REMARK 1. Let V be a free A-module with the basis $\{u, v\}$, $V = Au \oplus Av$. For $\rho \in O(V, q)$, let $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ denote the matrix of ρ with respect to the basis $\{u, v\}$. Then $(\det \rho)^2 = 1$. If ρ is in $O^+(V, q)$ then $\det \rho = 1$. If $\tilde{\rho} | B = \tau$ then $\det \rho = -1$.

Proof. Since $C(V, q) = A \oplus Auv \oplus Au \oplus Av$ and $B = A \oplus Auv$, we have $\tilde{\rho}(uv) = (au+bv)(cu+dv) = B_q(cu, bv) + acq(u) + bdq(v) + (det <math>\rho)uv$. Since $(uv)^2 = B_q(u, v)uv - q(u)q(v)$, we have $B = C^+(V, q) = (A, B_q(u, v), -1)$ and $\tau(uv) = B_q(u, v)$