A NOTE ON THE ORTHOGONAL GROUP OF A QUADRATIC MODULE OF RANK TWO OVER A COMMUTATIVE RING

Teruo KANZAKI

(Received April 24, 1973)

Let A be an arbitrary commutaive ring with the identity element. This note will give an elementary property on the orthogonal group of a non-degenerate quadartic A-module of rank two. Throughout this paper, we will assume that (V, q) is a non-degenerate quadratic A-module such that V is a finitely generated projective A-module and [$V_{\mathrm{m}}: A_{\mathrm{m}}$] $=2$ for all maximal ideal m of A. The Cilfford algebra $\mathrm{C}(V, q)$ is a quadratic extension of $\mathrm{C}_{0}(V, q)$, the set of homogeneous elements of degree 0 in $\mathrm{C}(V, q)$, and $\mathrm{C}_{0}(V, q)$ is a commutative and separable quadratic extension of A (cf. [3], [4]). Set $B=\mathrm{C}_{0}(V, q) . \quad B$ is a Galois extension of A with a Galois group $G=\{I, \tau\}$, and τ is the unique A-algrbra automorphism of B such that the fixed subring of B is A ([4], [5]). By [3], V is an invertible B-bilmodule, and $(V, \phi), \phi: V \times V \rightarrow B ; \phi(x, y)=x y$ in $\mathrm{C}(V, q)$ for $x, y \in V$, is a non-degenerate hermitian B-module ((2.4) in [3]). We denote by $\mathrm{I}(A)$ the set of idempotents in A, which is an abelian group with respect to the product $* ; e * e^{\prime}=e+e^{\prime}-2 e e^{\prime}$ for $e, e^{\prime} \in \mathrm{I}(A)$. Then, by [1], the group Aut (B / A) of all A-algebra automorphisms of B is $\{e \tau+(1-e) I ; e \in I(A)\}$, and is isomorphic to $\mathrm{I}(A)$ by the isomorphism $\mu: \mathrm{I}(A) \rightarrow$ Aut $(B / A) ; e \rightsquigarrow \rightarrow \mu=e \tau+(1-e) I$. Let $O(V, q)$ be the orthogonal group of (V, q), i.e. $O(V, q)=\left\{\rho \in \operatorname{Hom}_{A}(V, V) ; q(\rho v)\right)$ $=q(v)$ and $\rho(V)=V\}$. For any $\rho \in O(V, q), \rho$ is extended to an A-algebra automorphism $\tilde{\rho}$ of $\mathrm{C}(V, q)$ which induces an automorphism of B. Accordingly, there exists a group homorphism $\eta: O(V, q) \rightarrow \mathrm{I}(A) ; \rho \rightsquigarrow \rightarrow \mu^{-1}(\rho \mid B)$. We put $O^{+}(V, q)$ $=\{\rho \in O(V, q) ; \rho \mid B=I\}$ and $O^{-}(V, q)=\{\rho \in O(V, q) ; \tilde{\rho} \mid B \neq I\}$.

Remark 1. Let V be a free A-module with the basis $\{u, v\}, V=A u \oplus A v$. For $\rho \in O(V, q)$, let $\rho=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ denote the matrix of ρ with respect to the basis $\{u, v\}$. Then $(\operatorname{det} \rho)^{2}=1$. If ρ is in $O^{+}(V, q)$ then $\operatorname{det} \rho=1$. If $\tilde{\rho} \mid B=\tau$ then $\operatorname{det} \rho=-1$.

Proof. \quad Since $\mathrm{C}(V, q)=A \oplus A u v \oplus A u \oplus A v$ and $B=A \oplus A u v$, we have $\tilde{\rho}(u v)$ $=(a u+b v)(c u+d v)=\mathrm{B}_{q}(c u, b v)+a c q(u)+b d q(v)+(\operatorname{det} \rho) u v$. Since $(u v)^{2}=\mathrm{B}_{q}$ $(u, v) u v-q(u) q(v)$, we have $B=\mathrm{C}^{+}(V, q)=\left(A, \mathrm{~B}_{q}(u, v),-1\right)$ and $\tau(u v)=\mathrm{B}_{q}(u, v)$

