MULTIPLICATIVE P-SUBGROUPS OF SIMPLE ALGEBRAS

MICHITAKA HIKARI

(Received May 1., 1972)

Amitsur ([1]) determined all finite multiplicative subgroups of division algebras. We will try to determine, more generally, multiplicative subgroups of simple algebras. In this paper we will characterize *p*-groups contained in full matrix algebras $M_n(\Delta)$ of fixed degree *n*, where Δ are division algebras of characteristic 0.

All division algebras considered in this paper will be of characteristic 0.

Let Δ be a division algebra. We will denote by $M_n(\Delta)$ the full matrix algebra of degree *n* over Δ . By a subgroup of $M_n(\Delta)$ we will mean a multiplicative subgroup of $M_n(\Delta)$. Further let K be a subfield of the center of Δ and let G be a finite subgroup of $M_n(\Delta)$. Now we define $V_K(G) = \{\sum \alpha_i g_i | \alpha_i \in K, g_i \in G\}$. Then $V_K(G)$ is clearly a K-subalgebra of $M_n(\Delta)$ and there is a natural epimorphism $KG \rightarrow V_K(G)$ where KG denotes the group algebra of G over K. Hence $V_K(G)$ is a semi-simple K-subalgebra of $M_n(\Delta)$, which is a direct summand of KG. As usual Q, R, C, H denote respectively the rational number field, the real number field, the complex number field and the quaternion algebra over R.

If an abelian group G has invariants (e_1, \dots, e_n) , $e_n \neq 1$, $e_{i+1} \mid e_i$, we say briefly that G has invariants of length n.

We begin with

Proposition 1. Let n be a fixed positive integer and let G be a finite abelian group. Then there is a division algebra Δ such that $G \subset M_n(\Delta)$ if and only if G has invariants of length $\leq n$.

Proof. This may be well known. Here we give a proof. Suppose that there is a division algebra Δ such that $G \subset M_n(\Delta)$. An abelian group G has invariants of length $\leq n$ whenever each Sylow subgroup of G has invariants of length $\leq n$. Hence we may assume that G is a p-group (± 1) . Let m be the length of invariants of G. Then G contains the elementary abelian group G_0 of $1+p+\dots+p^{m-1}$

order p^m . We can write $QG_0 \simeq Q \oplus Q(\varepsilon_p) \oplus \cdots \oplus Q(\varepsilon_p)$ where ε_p denotes the primitive *p*-th root of unity. Since $V_Q(G_0)$ is a direct summand of QG_0 and m

 $G_{\mathfrak{q}} \subset V_{\mathcal{Q}}(G_{\mathfrak{q}})$, we have $V_{\mathcal{Q}}(G_{\mathfrak{q}}) \cong \widetilde{\mathcal{Q}}(\mathcal{E}_{p}) \oplus \cdots \oplus \mathcal{Q}(\mathcal{E}_{p})$. On the other hand, since