Hikari, M.
Osaka J. Math.
10 (1973), 369-374

MULTIPLICATIVE P-SUBGROUPS OF SIMPLE ALGEBRAS

Michitaka HIKARI

(Received May 1., 1972)

Amitsur ([1]) determined all finite multiplicative subgroups of division algebras. We will try to determine, more generally, multiplicative subgroups of simple algebras. In this paper we will characterize p-groups contained in full matrix algebras $M_{n}(\Delta)$ of fixed degree n, where Δ are division algebras of characteristic 0 .

All division algebras considered in this paper will be of characteristic 0 .
Let Δ be a division algebra. We will denote by $M_{n}(\Delta)$ the full matrix algebra of degree n over Δ. By a subgroup of $\mathrm{M}_{n}(\Delta)$ we will mean a multiplicative subgroup of $M_{n}(\Delta)$. Further let K be a subfield of the center of Δ and let G be a finite subgroup of $M_{n}(\Delta)$. Now we define $V_{K}(G)=\left\{\sum \alpha_{i} g_{i} \mid \alpha_{i} \in K, g_{i} \in G\right\}$. Then $V_{K}(G)$ is clearly a K-subalgebra of $M_{n}(\Delta)$ and there is a natural epimorphism $K G \rightarrow V_{K}(G)$ where $K G$ denotes the group algebra of G over K. Hence $V_{K}(G)$ is a semi-simple K-subalgebra of $M_{n}(\Delta)$, which is a direct summand of $K G$. As usual $\boldsymbol{Q}, \boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}$ denote respectively the rational number field, the real number field, the complex number field and the quaternion algebra over \boldsymbol{R}.

If an abelian group G has invariants (e_{1}, \cdots, e_{n}), $e_{n} \neq 1, e_{i+1} \mid e_{i}$, we say briefly that G has invariants of length n.

We begin with
Proposition 1. Let n be a fixed positive integer and let G be a finite abelian group. Then there is a division algebra Δ such that $G \subset M_{n}(\Delta)$ if and only if G has invariants of length $\leqq n$.

Proof. This may be well known. Here we give a proof. Suppose that there is a division algebra Δ such that $G \subset M_{n}(\Delta)$. An abelian group G has invariants of length $\leqq n$ whenever each Sylow subgroup of G has invariants of length $\leqq n$. Hence we may assume that G is a p-group ($\neq 1$). Let m be the length of invariants of G. Then G contains the elementary abelian group G_{0} of $\overbrace{Q\left(\varepsilon_{p}+\cdots+p^{m-1}\right.}^{1+p+\varepsilon_{p}}$
order p^{m}. We can write $\boldsymbol{Q} G_{o} \cong \boldsymbol{Q} \oplus \overbrace{\boldsymbol{Q}\left(\varepsilon_{p}\right) \oplus \cdots \oplus \boldsymbol{Q}\left(\varepsilon_{p}\right)}$ where ε_{p} denotes the primitive p-th root of unity. Since $V_{\boldsymbol{Q}}\left(G_{0}\right)$ is a direct summand of $\boldsymbol{Q} G_{0}$ and $G_{0} \subset V_{\boldsymbol{Q}}\left(G_{0}\right)$, we have $V_{\boldsymbol{Q}}\left(G_{0}\right) \cong \overbrace{\boldsymbol{Q}\left(\varepsilon_{p}\right) \oplus \cdots \oplus \boldsymbol{Q}\left(\varepsilon_{p}\right)}^{\boldsymbol{m}}$. On the other hand, since

