AN INTEGRO-DIFFERENTIAL EQUATION FOR A COMPOUND POISSON PROCESS WITH DRIFT AND THE INTEGRAL EQUATION OF H. CRAMER

TAKESI WATANABE

(Received April 13, 1971)

1. Introduction

Let $(Y(t))_{t\geq 0}$ be a compound Poisson process on $\mathbf{R}=(-\infty, \infty)$ with the characteristic function

(1.1)
$$\mathbf{E}(e^{iyY(t)}) = \exp\left\{t\int_{-\infty}^{\infty} (e^{iyu}-1)\nu(du)\right\},$$

where ν is a finite measure. For short we assume that

$$\int_{-\infty}^{\infty} \nu(du) = 1.$$

Let $(X(t))_{t\geq 0}$ be the compound Poisson process with a drift term at $(a\in \mathbb{R})$:

$$(1.3) X(t) = at + Y(t).$$

It is known that, if f is a bounded function with a second continuous derivative, $t^{-1}[\mathbf{E}\{f(x+X(t))\}-f(x)]$ converges uniformly on every bounded intervals to

(1.4)
$$Af(x) := af'(x) + \int_{-\infty}^{\infty} [f(x+y) - f(x)] \nu(dy).$$

One now enlarges the domain of A as follows. Let G be an open subset of \mathbf{R} . Denote by \mathcal{B} the class of all bounded, measurable and real-valued functions on \mathbf{R} . Define

(1.5)
$$\mathcal{D}(A; G) := \{ f \in \mathcal{B}; f \text{ is absolutely continuous in } G \}$$
 if $a \neq 0$, $= \mathcal{B}$ if $a = 0$.

For $f \in \mathcal{D}(A; G)$, Af is defined almost everywhere in G by (1.4).

The main result of this note is Theorem 2 in section 2 which describes, for each $\lambda \ge 0$, a natural class of functions in $\mathcal{D}(A; G)$ satisfying the equation

(1.6)
$$(\lambda - A)f = 0$$
 almost everywhere in G .