CONTRIBUTIONS TO THE THEORY OF INTERPOLATION OF OPERATIONS

Sumiyuki KOIZUMI

(Received August 31, 1970)

- 1. Introduction. Let (R, μ) and (S, ν) be two measure spaces of totally σ -finite in the sense of P. Halmos [7]. Let us consider operation T which transforms measurable functions on R to those on S. The operation T is called quasilinear if:
 - (i) $T(f_1+f_2)$ is uniquely defined whenever Tf_1 and Tf_2 are defined and $|T(f_1+f_2)| \le \kappa(|Tf_1|+|Tf_2|)$

1- (J1 | J2) | = 0(1-J1| | 1 | 1-)

(ii) T(cf) is uniquely defined whenever Tf is defined and

where κ is a constant independent of f_1 and f_2 ;

$$|T(cf)| = |c| |Tf|$$

for all scalars c.

We say that

$$\tilde{f} = Tf$$

is an operation of type (a, b), $1 \le a \le b \le \infty$, if:

(i) If is defined for each $f \in L^a_\mu(R)$, that is for each f measurable with respect to μ such that

$$||f||_{a,\mu} = \left(\int_{R} |f|^a d\mu\right)^{1/a}$$

is finite, the right side being interpreted as the essential upper bound (with respect to μ) of |f| if $a=\infty$;

(ii) for every $f \in L^a_\mu(R)$, $\tilde{f} = Tf$ is in $L^b_\nu(S)$ and

$$(1.1) ||\widetilde{f}||_{b,\nu} \leq M ||f||_{a,\mu},$$

where M is a constant independent of f.

The least admissible value of M in (1.1) is called the (a, b)-norm of operation T.