LOCAL COHOMOLOGY AND CONNECTEDNESS OF ANALYTIC SUBVARIETIES

Yum-Tong SIU

(Received April 10, 1968)
(Revised August 17, 1968)

Suppose X is an analytic subvariety in some open neighborhood G of the origin 0 in \boldsymbol{C}^{n} with $\operatorname{codim}_{G ; 0}(X)=r$, where $\operatorname{codim}_{G ; 0}(X)$ denotes the codimension at 0 of X as a subvariety of G. Let ${ }_{n} \mathfrak{O}$ be the structure sheaf of \boldsymbol{C}^{n}. Let $H_{X ; 0}^{p}\left({ }_{n} \bigcirc\right)$, or simply $H_{X ; 0}^{p}$, denote the direct limit of $\left\{H^{p-1}\left(U-X,{ }_{n} \bigcirc\right) \mid U\right.$ is an open neighborhood of 0 in $G\}$ for $p \geqq 1$. ($H_{X ; 0}^{p}$ agrees with the stalk at 0 of the sheaf defined by the p-th local cohomology groups at X with coefficients in ${ }_{n} \mathfrak{O}, ~[1]$, p. 79). We say that X is locally a complete intersection at 0 if X can be defined locally at 0 by r holomorphic functions. If X is locally a complete intersection, obviously we have

$$
\begin{equation*}
H_{X ; 0}^{p}=0 \quad \text { for } \quad p>r . \tag{1}
\end{equation*}
$$

The question naturally arises: to what extent does (1) characterize a local complete intersection? Not much is known about the characterization of local complete intersections. In [3] Hartshorne introduces a concept of connectedness which in our case is equivalent to the following: X is locally connected in codimension k at 0 if the germ of X at 0 cannot be decomposed as the union of two subvarietygerms which are both different from the germ of X at 0 and whose intersection is a subvariety-germ Y with $\operatorname{codim}_{X ; 0}(Y)>k$. He shows that, if X is locally a complete intersection, then X is locally connected in codimension 1 at 0 (and also locally connected in codimension 1 at 0 in some properly defined formal sense). In this note we prove that (1) is a stronger necessary condition for local complete intersections than the connectedness condition. The following is our main theorem:

Theorem 1. Suppose $q \geqq 0$. If $H_{X ; 0}^{p}=0$ for $p>q+r$, then X is locally connected in codimension $q+1$ at 0 .

For the proof of Theorem 1 we need the following:
Lemma 1. Suppose Y is a 1-dimensional subvariety in some open neighborhood H of 0 in C^{n}. Suppose 0 is the only singular point of Y and Y is locally irreducible at 0 . Then $H_{Y ; 0}^{n}=0$.

