A CLUSTER OF SETS OF EXCEPTIONAL TIMES OF LINEAR BROWNIAN MOTION

YASUKI ISOZAKI

(Received June 7, 2000)

1. Introduction and the main theorems

Aspandiiarov-Le Gall [1] studied the following random closed sets K^- , K and K': Let $(B_t; t \ge 0)$ be a linear standard Brownian motion starting at 0, and let

$$K^{-} = \left\{ t \in [0, 1]; \int_{s}^{t} (B_{u} - B_{t}) du \leq 0 \text{ for every } s \in [0, t). \right\},$$

$$K = \left\{ t \in K^{-}; \int_{t}^{s} (B_{u} - B_{t}) du \leq 0 \text{ for every } s \in (t, 1]. \right\},$$

$$K' = \left\{ t \in K^{-}; \int_{t}^{s} (B_{u} - B_{t}) du \geq 0 \text{ for every } s \in (t, 1]. \right\}.$$

They computed the Hausdorff dimension of K^- , K and K'.

Theorem ([1]). It holds dim $K^- = 3/4$, dim K = 1/2 and dim $K' \le 1/2$ almost surely. The set K' is possibly empty or dim K' = 1/2, both with positive probability. The same statements hold if the weak inequalities in the definition of K^- , K and K' are replaced by the strict inequalities.

In this paper, we consider a cluster of random sets having various dimension. For $\alpha \ge 0$ and c > 0, we define the following functions $V(\alpha, c)$ increasing on \mathbb{R} :

$$V(\alpha, c; y) = y^{\alpha}$$
 for $y > 0$; $V(\alpha, c; 0) = 0$; $V(\alpha, c; y) = -\frac{|y|^{\alpha}}{c}$ for $y < 0$.

Let α , α_+ , $\alpha_- \geq 0$, c, c_+ , $c_- > 0$ and write V for $V(\alpha, c)$, V_{\pm} for $V(\alpha_{\pm}, c_{\pm})$. We define the random sets depending on the functions V, V_+ and V_- :

(1.1)
$$K^{-}(V) = \left\{ t \in [0, 1]; \int_{s}^{t} V(B_{u} - B_{t}) du \leq 0 \text{ for every } s \in [0, t). \right\},$$
(1.2)
$$K(V_{-}; V_{+}) = \left\{ t \in K^{-}(V_{-}); \int_{t}^{s} V_{+}(B_{u} - B_{t}) du \leq 0 \text{ for every } s \in (t, 1]. \right\},$$

AMS 1991 subject classifications. Primary 60J65; Secondary 60J55.