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0. Introduction

In this paper we investigate complex analytic completenessof certain unramified
covers of proper families of analytic spaces with -dimensional fibers. When = 1,
T. Ohsawa has studied the stability of unramified covering spaces of complex analytic
families of Riemann surfaces, and proved the following ([13], [14]):

Theorem O. (1) Let be a connected complex manifold of dimension2 and
the unit disk ofC. Let π : −→ be a proper surjective holomorphic submersion.
Then every unramified covering space of is holomorphically convex.(2) Let be
any contractible complex space, and X a complex space. Letπ : −→ be a proper
surjective holomorphic map with one-dimensional fibers, and σ : ˜ −→ an unram-
ified cover. Then a point ∈ has an open neighborhood such that(π ◦ σ)−1( )
is holomorphically convex if and only if(π ◦ σ)−1( ) is holomorphically convex.

In connection with Theorem O, the author ([10]) and M. Coltoiuand V. Vâjâitu
([4]) have investigated completeness of the covering spaces of proper families with
higher dimensional fibers. Here we shall prove a new result inthis direction.

Let π : −→ be a proper surjective holomorphic map of connected complex
manifolds, and = dim − dim the relative dimension. Letσ : ˜ −→ be an un-
ramified cover. We remark that when is an analytic subset,π−1( ) and (π◦σ)−1( )
have possibly non-reduced structures. Then we prove the following.

Theorem. Let be a point of satisfying the following two conditions: (i)
π−1( ) is a reduced connected complex space of dimension, (ii) (π ◦ σ)−1( ) has no
compact irreducible component of dimension, where = dim − dim is the rela-
tive dimension. Then there exists an open neighborhood of such that (π ◦σ)−1( )
is -complete.

It is well known that every -dimensional reduced paracompact complex space is
-complete if it has no compact irreducible component of dimension ([12], [6]). Our

theorem is a relative version of this fact. We also remark that Coltoiu and V̂ajâitu have


