ON THE n-COMPLETENESS OF COVERINGS OF PROPER FAMILIES OF ANALYTIC SPACES

Kazuhisa MIYAZAWA

(Received September 21, 1999)

0. Introduction

In this paper we investigate complex analytic completeness of certain unramified covers of proper families of analytic spaces with n-dimensional fibers. When $n=1$, T. Ohsawa has studied the stability of unramified covering spaces of complex analytic families of Riemann surfaces, and proved the following ([13], [14]):

Theorem O. (1) Let X be a connected complex manifold of dimension 2 and T the unit disk of \mathbf{C}. Let $\pi: X \longrightarrow T$ be a proper surjective holomorphic submersion. Then every unramified covering space of X is holomorphically convex. (2) Let T be any contractible complex space, and X a complex space. Let $\pi: X \longrightarrow T$ be a proper surjective holomorphic map with one-dimensional fibers, and $\sigma: \widetilde{X} \longrightarrow X$ an unramified cover. Then a point $z \in T$ has an open neighborhood U such that $(\pi \circ \sigma)^{-1}(U)$ is holomorphically convex if and only if $(\pi \circ \sigma)^{-1}(z)$ is holomorphically convex.

In connection with Theorem O, the author ([10]) and M. Coltoiu and V. Vâjâitu ([4]) have investigated completeness of the covering spaces of proper families with higher dimensional fibers. Here we shall prove a new result in this direction.

Let $\pi: X \longrightarrow T$ be a proper surjective holomorphic map of connected complex manifolds, and $n=\operatorname{dim} X-\operatorname{dim} T$ the relative dimension. Let $\sigma: \widetilde{X} \longrightarrow X$ be an unramified cover. We remark that when A is an analytic subset, $\pi^{-1}(A)$ and $(\pi \circ \sigma)^{-1}(A)$ have possibly non-reduced structures. Then we prove the following.

Theorem. Let z be a point of T satisfying the following two conditions: (i) $\pi^{-1}(z)$ is a reduced connected complex space of dimension n, (ii) $(\pi \circ \sigma)^{-1}(z)$ has no compact irreducible component of dimension n, where $n=\operatorname{dim} X-\operatorname{dim} T$ is the relative dimension. Then there exists an open neighborhood U of z such that $(\pi \circ \sigma)^{-1}(U)$ is n-complete.

It is well known that every n-dimensional reduced paracompact complex space is n-complete if it has no compact irreducible component of dimension n ([12], [6]). Our theorem is a relative version of this fact. We also remark that Coltoiu and Vâjâitu have

