ESTIMATES OF HITTING PROBABILITIES FOR A 1-DIMENSIONAL REINFORCED RANDOM WALK

Masaki TAKESHIMA

(Received January 7, 2000)

1. Introduction

In this paper, we will discuss the recurrence of a matrix type reinforced random walk $\vec{X}=\left\{X_{n}\right\}_{n \geq 0}$, with initial weights $\{w(0, j)\}_{j \in \mathbf{Z}}$ and a reinforcing matrix $A=\{a(n, j)\}_{n \in \mathbf{N}, j \in \mathbf{Z}}$ of non-negative numbers. The transition mechanism of this walk is defined through its weight process $\vec{W}=\{w(n, j)\}_{n \geq 0, j \in \mathbf{Z}}$ in the following manner.

$$
\begin{align*}
& P\left[X_{n+1}=j+1 \mid X_{n}=j,\{w(n, i)\}_{i \in \mathbf{Z}}\right]=\frac{w(n, j)}{w(n, j-1)+w(n, j)} \tag{1.1}\\
& P\left[X_{n+1}=j-1 \mid X_{n}=j,\{w(n, i)\}_{i \in \mathbf{Z}}\right]=\frac{w(n, j-1)}{w(n, j-1)+w(n, j)}
\end{align*}
$$

The weight process \vec{W} is a family of additive functional of \vec{X}, which are defined in terms of A.

$$
\begin{equation*}
w(n, j)=w(0, j)+\sum_{l=1}^{\phi(n, j)} a(l, j) \tag{1.2}
\end{equation*}
$$

where $\phi(n, j)$ is the total number that \vec{X} crosses the edge $\{j, j+1\}$ up to time n;

$$
\begin{equation*}
\phi(n, j)=\sum_{l=1}^{n} 1_{\left\{\left\{X_{l-1}, X_{l}\right\}=\{j, j+1\}\right\}} \tag{1.3}
\end{equation*}
$$

where l_{A} is an indicator function of a set A. Throughout this paper we call the pair $[\vec{X}, \vec{W}]$ simply by a reinforced random walk. We shall abbreviate a reinforced random walk to RRW.

We call a path \vec{X} recurrent if for every $j \in \mathbf{Z}, X_{n}$ visits j infinitely often, and transient if for every $j \in \mathbf{Z}, X_{n}$ visits j only finitely many times. If there exist $\alpha<\beta$ such that $\alpha \leq X_{n} \leq \beta$ for all n, then we say that the path \vec{X} has finite range. We will introduce convergence tests of the a following function. Let $\Phi:(0, \infty)^{\mathbf{N} \cup\{0\}} \rightarrow$ $(0, \infty]$ be given by

