ESTIMATES OF HITTING PROBABILITIES FOR A 1-DIMENSIONAL REINFORCED RANDOM WALK

MASAKI TAKESHIMA

(Received January 7, 2000)

1. Introduction

In this paper, we will discuss the recurrence of a matrix type reinforced random walk $\vec{X} = \{X_n\}_{n\geq 0}$, with initial weights $\{w(0, j)\}_{j\in \mathbb{Z}}$ and a reinforcing matrix $A = \{a(n, j)\}_{n\in\mathbb{N}, j\in\mathbb{Z}}$ of non-negative numbers. The transition mechanism of this walk is defined through its weight process $\vec{W} = \{w(n, j)\}_{n>0, j\in\mathbb{Z}}$ in the following manner.

(1.1)
$$P[X_{n+1} = j+1 | X_n = j, \{w(n,i)\}_{i \in \mathbf{Z}}] = \frac{w(n,j)}{w(n,j-1)+w(n,j)},$$
$$P[X_{n+1} = j-1 | X_n = j, \{w(n,i)\}_{i \in \mathbf{Z}}] = \frac{w(n,j-1)}{w(n,j-1)+w(n,j)}.$$

The weight process \overrightarrow{W} is a family of additive functional of \overrightarrow{X} , which are defined in terms of A.

(1.2)
$$w(n,j) = w(0,j) + \sum_{l=1}^{\phi(n,j)} a(l,j),$$

where $\phi(n, j)$ is the total number that \overrightarrow{X} crosses the edge $\{j, j+1\}$ up to time n;

(1.3)
$$\phi(n, j) = \sum_{l=1}^{n} I_{\{\{X_{l-1}, X_l\} = \{j, j+1\}\}}$$

where I_A is an indicator function of a set A. Throughout this paper we call the pair $[\overrightarrow{X}, \overrightarrow{W}]$ simply by a reinforced random walk. We shall abbreviate a reinforced random walk to RRW.

We call a path \vec{X} recurrent if for every $j \in \mathbb{Z}$, X_n visits j infinitely often, and transient if for every $j \in \mathbb{Z}$, X_n visits j only finitely many times. If there exist $\alpha < \beta$ such that $\alpha \leq X_n \leq \beta$ for all n, then we say that the path \vec{X} has finite range. We will introduce convergence tests of the a following function. Let $\Phi : (0, \infty)^{\mathbb{N} \cup \{0\}} \rightarrow$ $(0, \infty]$ be given by