Kawata, S. Osaka J. Math. **38** (2001), 487–499

ON AUSLANDER-REITEN COMPONENTS AND PROJECTIVE LATTICES OF *p*-GROUPS

Dedicated to Professor Yukio Tsushima on his 60th birthday

SHIGETO KAWATA

(Received November 15, 1999)

Introduction

Let G be a finite group, p a prime number which divides the order of G, and (K, \mathcal{O}, k) a p-modular system, i.e., \mathcal{O} is a complete discrete valuation ring of characteristic zero with maximal ideal (π) , $k(:= \mathcal{O}/(\pi))$ is the residue field of \mathcal{O} of characteristic p > 0, and K is the field of fractions of \mathcal{O} . R is used to denote either \mathcal{O} or k. All the RG-modules considered here are R-free and finitely generated over R.

Let $\Gamma(RG)$ be the Auslander-Reiten quiver of RG. For a connected component Θ of $\Gamma(RG)$, we denote by Θ_s the stable part of Θ obtained from Θ by removing all projective RG-modules and arrows attached to them. In [16], P. J. Webb showed that the tree class of Θ_s is either a Euclidean diagram or one of the infinite trees A_{∞} , B_{∞} , C_{∞} , D_{∞} and A_{∞}^{∞} if the modules in Θ do not lie in a block of cyclic defect.

It was shown in [10] that if G is a p-group and $\mathcal{O}G$ is of infinite representation type, and furthermore if $(\pi) \supseteq (2)$ in the case where p = 2 and G is the Klein four group, then the stable part of the connected component of $\Gamma(\mathcal{O}G)$ containing the trivial $\mathcal{O}G$ -lattice \mathcal{O}_G has tree class A_{∞} . The purpose of this paper is to show the following.

Theorem. Let G be a p-group and Δ the connected component of $\Gamma(\mathcal{O}G)$ containing the projective $\mathcal{O}G$ -lattice $\mathcal{O}G$. Suppose that $\mathcal{O}G$ is of infinite representation type. Suppose further that $(\pi) \supseteq (2)$ in the case where p = 2 and G is the Klein four group. Then the tree class of the stable part Δ_s of Δ is A_{∞} .

It is known that the group ring $\mathcal{O}G$ of a finite *p*-group *G* is of finite representation type if and only if one of the following cases arises: (i) $G = C_2$; (ii) $G = C_3$ and (3) $\supseteq (\pi^3)$; (iii) $G = C_p$ and (*p*) $\supseteq (\pi^2)$; (iv) $G = C_{p^2}$ and (*p*) $= (\pi)$, where C_{p^n} is the cyclic group of order p^n . See [4]. Also, it is known that if *G* is the Klein four group and (π) = (2), then the tree class of the stable part of the connected component of $\Gamma(\mathcal{O}G)$ containing the projective $\mathcal{O}G$ -lattice $\mathcal{O}G$ is \tilde{D}_4 (Proposition 3.4 of [5]).

In the rest of this paper G will always be a finite p-group. In Sections 1, we con-