ON AUSLANDER-REITEN COMPONENTS AND PROJECTIVE LATTICES OF p-GROUPS

Dedicated to Professor Yukio Tsushima on his 60th birthday

Shigeto KAWATA

(Received November 15, 1999)

Introduction

Let G be a finite group, p a prime number which divides the order of G, and (K, \mathcal{O}, k) a p-modular system, i.e., \mathcal{O} is a complete discrete valuation ring of characteristic zero with maximal ideal $(\pi), k(:=\mathcal{O} /(\pi))$ is the residue field of \mathcal{O} of characteristic $p>0$, and K is the field of fractions of $\mathcal{O} . R$ is used to denote either \mathcal{O} or k. All the $R G$-modules considered here are R-free and finitely generated over R.

Let $\Gamma(R G)$ be the Auslander-Reiten quiver of $R G$. For a connected component Θ of $\Gamma(R G)$, we denote by Θ_{s} the stable part of Θ obtained from Θ by removing all projective $R G$-modules and arrows attached to them. In [16], P. J. Webb showed that the tree class of Θ_{s} is either a Euclidean diagram or one of the infinite trees A_{∞}, B_{∞}, C_{∞}, D_{∞} and A_{∞}^{∞} if the modules in Θ do not lie in a block of cyclic defect.

It was shown in [10] that if G is a p-group and $\mathcal{O} G$ is of infinite representation type, and furthermore if $(\pi) \supsetneqq(2)$ in the case where $p=2$ and G is the Klein four group, then the stable part of the connected component of $\Gamma(\mathcal{O} G)$ containing the trivial $\mathcal{O} G$-lattice \mathcal{O}_{G} has tree class A_{∞}. The purpose of this paper is to show the following.

Theorem. Let G be a p-group and Δ the connected component of $\Gamma(\mathcal{O} G)$ containing the projective \mathcal{O}-lattice $\mathcal{O} G$. Suppose that $\mathcal{O} G$ is of infinite representation type. Suppose further that $(\pi) \supsetneqq(2)$ in the case where $p=2$ and G is the Klein four group. Then the tree class of the stable part Δ_{s} of Δ is A_{∞}.

It is known that the group ring $\mathcal{O} G$ of a finite p-group G is of finite representation type if and only if one of the following cases arises: (i) $G=C_{2}$; (ii) $G=C_{3}$ and (3) $\supseteq\left(\pi^{3}\right)$; (iii) $G=C_{p}$ and $(p) \supseteq\left(\pi^{2}\right)$; (iv) $G=C_{p^{2}}$ and $(p)=(\pi)$, where $C_{p^{n}}$ is the cyclic group of order p^{n}. See [4]. Also, it is known that if G is the Klein four group and $(\pi)=(2)$, then the tree class of the stable part of the connected component of $\Gamma(\mathcal{O} G)$ containing the projective $\mathcal{O} G$-lattice $\mathcal{O} G$ is \tilde{D}_{4} (Proposition 3.4 of [5]).

In the rest of this paper G will always be a finite p-group. In Sections 1 , we con-

