Abe, Y. Osaka J. Math. 27 (1990), 621-627

DIFFEOMORPHIC EXTENSION OF BIHOLOMORPHIC MAPPINGS WITH SMOOTH MODULUS

ЧИКІТАКА АВЕ

(Received September 18, 1989)

1. Introduction

Fefferman proved in [8] that any biholomorphic mapping between two smooth bounded strictly pseudoconvex domains D_1 and D_2 in C^n extends to a diffeomorphism of \overline{D}_1 onto \overline{D}_2 . Later Fefferman's theorem was extended by Bell and Ligocka [7] and Bell [2].

Let D be a smooth bounded pseudoconvex domain in \mathbb{C}^n . Let $L^2(D)$ be the space of square-integrable functions on D. We denote by H(D) the space of square-integrable holomorphic functions on D. The Bergman projection P is the orthogonal projection from $L^2(D)$ to H(D). The domain D is said to satisfy condition R if P maps $C^{\infty}(\overline{D})$ continuously into $C^{\infty}(\overline{D})$. Bell's result [2] is as follows:

Let D_1 and D_2 be smooth bounded pseudoconvex domains in \mathbb{C}^n . If either D_1 or D_2 satisfies condition R, then any biholomorphic mapping between D_1 and D_2 extends to a diffeomorphism of \overline{D}_1 onto \overline{D}_2 .

It is not known that any biholomorphic mapping between smooth bounded weakly pseudoconvex domains in \mathbb{C}^n can be extended to a diffeomorphism onto the bouundary. Fornaess proved in [9] that any biholomorphic mapping $f: D_1 \rightarrow D_2$ between bounded pseudoconvex domains D_1 and D_2 in \mathbb{C}^n with \mathbb{C}^2 boundary extends to a \mathbb{C}^2 -diffeomorphism of \overline{D}_1 onto \overline{D}_2 , if f has a \mathbb{C}^2 -extension $f: \overline{D}_1 \rightarrow \overline{D}_2$. In this paper we shall prove the theorem of this type. Let D_1 and D_2 be smooth bounded pseudoconvex domains in \mathbb{C}^n . Using Bell's method we shall prove that any biholomorphic mapping $f: D_1 \rightarrow D_2$ extends to a \mathbb{C}^∞ -diffeomorphism of \overline{D}_1 onto \overline{D}_2 , whenever $|f|^2$ is \mathbb{C}^∞ .

2. Preliminaries

Let D be a smooth bounded pseudoconvex domiain in \mathbb{C}^{n} . We denote by $W^{s}(D)$ the usual Sobolev space for s>0. A negative Sobolev space $W^{-s}(D)$ is the dual space of $W^{s}_{0}(D)$, where $W^{s}_{0}(D)$ is the closure of $C^{\infty}_{0}(D)$ in $W^{s}(D)$. We now consider the dual space $W^{s}(D)^{*}$ of $W^{s}(D)$ for s>0.

Let \langle , \rangle be the $L^2(D)$ inner product. For any $f \in L^2(D), \langle \cdot, f \rangle$ is a