ORTHOGONAL GROUP MATRICES OF HYPEROCTAHEDRAL GROUPS

J. S. FRAME

To the memory of Tadasi Nakayama

1. Introduction. The hyperoctahedral group G_{n} of order $2^{n} n$! is generated by permutations and sign changes applied to n digits, $d=1,2, \ldots, n$. The 2^{n} sign changes generate a normal subgroup Σ_{n} whose factor group G_{n} / Σ_{n} is isomorphic with the symmetric group S_{n} of order $n!$. To each irreducible orthogonal representation $\{\lambda ; \mu\}$ of G_{n} corresponds an ordered pair of partitions [λ] of l and [μ] of m, where $l+m=n$. The faithful representation $\{n-1 ; 1\}$ of G_{n} is the real monomial group R_{n} of degree n. The representations $\{\lambda ; 0\}$ of G_{n} with $l=n, m=0$, are isomorphic with corresponding irreducible representations $\{\lambda\}$ of S_{n}. If the representation $\{\lambda ; \mu\}$ maps the element g_{k} of G_{n} into the real orthogonal matrix $M^{\lambda \mu}\left(g_{k}\right)$ of degree $f^{\lambda \mu}$, we define the group matrix of $\{\lambda ; \mu\}$ to be

$$
\begin{equation*}
\mathfrak{W}^{\lambda \mu}=\sum_{k} g_{k}^{-1} M^{\lambda \mu}\left(g_{k}\right) \quad g_{k} \in G_{n} \tag{1.1}
\end{equation*}
$$

Our purpose is to determine explicitly for each $\{\lambda ; \mu\}$ the $u v$-entry of the group matrix of an irreducible orthogonal representation of $G_{\boldsymbol{n}}$, and incidentally those of S_{n}, in the form

$$
\begin{equation*}
\mathfrak{m}_{u v}^{\lambda \cdot u}=\gamma_{v} E^{\lambda \mu} \sigma_{\sigma \mu}^{\lambda \mu} \gamma_{u}^{-1} \tag{1.2}
\end{equation*}
$$

by describing in the group ring Γ of G_{n} a suitab'e pair of ring elements $E^{\lambda_{\mu}}$ related to permutations of S_{n}, and $\sigma^{\lambda_{\mu}}$ related to sign changes of Σ_{n}, and also a set of invertible ring factors γ_{v} that meet our requirements. Matrices $M^{\lambda 0}\left(\tau_{d}\right)$ for transpositions τ_{d} of consecutive digits $d, d+1$ are to be those of Young's orthogonal representation $\{\lambda\}$ of S_{n} [4]. The matrix $M^{\lambda \mu}\left(\sigma_{d}\right)$ for the element σ_{d} of Σ_{n} that changes the sign of the digit d is to be a diagonal matrix with $v v$-entry +1 or -1 according as the digit d is assigned to the

