ORTHOGONAL GROUP MATRICES OF HYPEROCTAHEDRAL GROUPS

J. S. FRAME

To the memory of TADASI NAKAYAMA

1. Introduction. The hyperoctahedral group G_n of order $2^n n!$ is generated by permutations and sign changes applied to n digits, d = 1, 2, ..., n. The 2^n sign changes generate a normal subgroup Σ_n whose factor group G_n/Σ_n is isomorphic with the symmetric group S_n of order n!. To each irreducible orthogonal representation $\langle \lambda ; \mu \rangle$ of G_n corresponds an ordered pair of partitions $\lfloor \lambda \rfloor$ of l and $\lfloor \mu \rfloor$ of m, where l + m = n. The faithful representation $\langle n-1; 1 \rangle$ of G_n is the real monomial group R_n of degree n. The representations $\langle \lambda ; 0 \rangle$ of G_n with l = n, m = 0, are isomorphic with corresponding irreducible representations $\langle \lambda \rangle$ of S_n . If the representation $\langle \lambda ; \mu \rangle$ maps the element g_k of G_n into the real orthogonal matrix $M^{\lambda\mu}(g_k)$ of degree $f^{\lambda\mu}$, we define the group matrix of $\langle \lambda ; \mu \rangle$ to be

$$\mathfrak{M}^{\lambda\mu} = \sum_{k} g_k^{-1} M^{\lambda\mu}(g_k) \qquad g_k \in G_n \tag{1.1}$$

Our purpose is to determine explicitly for each $\{\lambda; \mu\}$ the *uv*-entry of the group matrix of an irreducible orthogonal representation of G_n , and incidentally those of S_n , in the form

$$\mathfrak{M}_{\boldsymbol{u}\boldsymbol{v}}^{\lambda\boldsymbol{\mu}} = \gamma_{\boldsymbol{v}} E^{\lambda\boldsymbol{\mu}} \sigma^{\lambda\boldsymbol{\mu}} \gamma_{\boldsymbol{u}}^{-1} \qquad (1.2)$$

by describing in the group ring Γ of G_n a suitable pair of ring elements $E^{\lambda\mu}$ related to permutations of S_n , and $\sigma^{\lambda\mu}$ related to sign changes of Σ_n , and also a set of invertible ring factors τ_v that meet our requirements. Matrices $M^{\lambda 0}(\tau_d)$ for transpositions τ_d of consecutive digits d, d+1 are to be those of Young's orthogonal representation $\{\lambda\}$ of S_n [4]. The matrix $M^{\lambda\mu}(\sigma_d)$ for the element σ_d of Σ_n that changes the sign of the digit d is to be a diagonal matrix with vv-entry +1 or -1 according as the digit d is assigned to the

Received July, 1965.