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1. Introduction. The hyperoctahedral group Gn of order 2nn\ is generated

by permutations and sign changes applied to n digits, J = 1, 2, . . . , n. The

2n sign changes generate a normal subgroup Σn whose factor group GnlΣn is

isomorphic with the symmetric group Sn of order n\. To each irreducible

orthogonal representation {λ p) of Gn corresponds an ordered pair of par-

titions [_λ~] of / and M of m, where ί+m = n. The faithful representation

{n - 1 1} of Gn is the real monomial group Rn of degree n. The representa-

tions {λ 0} of Gn with l=n, m = 0, are isomorphic with corresponding irre-

ducible representations {λ) of Sn. If the representation {λ μ) maps the

element gk of Gn into the real orthogonal matrix Mλμ(gk) of degree / λ μ , we

define the group matrix of {λ μ) to be

gk^Gn ( l . i)

Our purpose is to determine explicitly for each {λ ', μ) the z^-entry of the

group matrix of an irreducible orthogonal representation of Gn, and incidentally

those of Sn, in the form

Wλui = rvEλμσXμΰι (1.2)

by describing in the group ring Γ of Gn a suitable pair of ring elements Eλμ

related to permutations of SΛ, and aλμ related to sign changes of Σn, and also

a set of invertible ring factors γυ that meet our requirements. Matrices Mλ\τd)

for transpositions τd of consecutive digits d, d+\ are to be those of

Young's orthogonal representation {λ} of Sn M . The matrix Mλμ(σd) for the

element ad of Σn that changes the sign of the digit d is to be a diagonal

matrix with zw-entry 4-1 or - 1 according as the digit d is assigned to the

Received July, 1965.

535


