NOTE ON THE HARMONIC MEASURE OF THE ACCESSIBLE BOUNDARY OF A COVERING RIEMANN SURFACE

MAKOTO OHTSUKA

Introduction. The following relation was set up in [5] for an open covering Riemann surface \Re with positive boundary over an abstract Riemann surface $\underline{\Re}$:¹⁾

(1)
$$\mu(P, \mathfrak{A}(\mathfrak{R})) = \mu(P, \mathfrak{A}(\mathfrak{R})) \ge \mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})) \ge \mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})) \equiv \omega(P),$$

when the universal covering surface $\underline{\mathfrak{R}'}^{\infty}$ of the projection is not of hyperbolic type; when $\underline{\mathfrak{R}'}^{\infty}$ is of hyperbolic type this relation is reduced to

(2)
$$\mu(P, \mathfrak{A}(\mathfrak{R})) \ge \mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})) \equiv \omega(P).$$

In the present note we shall give some contributions to the clarification of these relations in two special cases.

1. We suppose first that \Re has a positive boundary, that $\underline{\Re}'^{\infty}$ is not of hyperbolic type, but that \Re covers a finite number of points $\{\underline{P}_n\}$ of $\underline{\Re}$ only in finite times, where the universal covering surface $(\underline{\Re} - \{\underline{P}_n\})^{\infty}$ is of hyperbolic type. Under these hypotheses we shall show

(3)
$$\mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})) = \mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})).$$

For that purpose it is sufficient to prove $\mu(P, \mathfrak{A}(\mathfrak{R}^{\infty})) \leq \mu(P, \mathfrak{A}(\mathfrak{R}^{\infty}))$ on account of (1).

Map \Re^{∞} conformally onto U: |z| < 1 and denote by f(z) the function which corresponds to $U \to \Re^{\infty} \to \Re \to \underline{\Re}$. Let *l* be an image in *U* of any determining curve of an accessible boundary point of \Re relative to \Re . If it is shown that

i) *l* terminates at a point on $\Gamma: |z| = 1;^{2}$

ii) f(z) has an angular limit at every point of $E - E_i$, where E is the image on Γ of $\mathfrak{A}(\mathfrak{R})$ and E_i is a set of linear measure zero;

iii) E is linearly measurable;

then Lemma in [5] will give $\mu(z, E) \leq \mu(P, \mathfrak{A}(\widetilde{\mathfrak{R}}^{\infty}))$. On the other hand, the Received February 17, 1951.

²⁾ This point is called an image of a point of $\mathfrak{A}(\mathfrak{R})$.

¹⁾ We shall follow the definitions and notations in [5] and make use of results in it without proofs.