Y. A. Rozanov Nagoya Math. J. Vol. 47 (1972), 227-235

ON NON-ANTICIPATIVE LINEAR TRANSFORMATIONS OF GAUSSIAN PROCESSES WITH EQUIVALENT DISTRIBUTIONS

YU. A. ROZANOV

Let $\xi(t)$, $t \in T$, be a Gaussian process on a set T, and $H = H(\xi)$ be the closed linear manifold generated by all values $\xi(t)$, $t \in T$, with the inner product

$$ig<\eta_1,\eta_2ig>=E\eta_1\eta_2$$
 ; $\eta_1,\eta_2\in H$.

We suppose that the Hilbert space H is separable.

Let \mathscr{A} be a linear operator on H; we call a random process of the form

$$\eta(t) = \mathscr{A}\xi(t)$$
, $t \in T$, (1)

a linear transformation of the process $\xi(t)$, $t \in T$. One says that a linear transformation \mathscr{A} is non-anticipative, if

$$\mathscr{A}H_t(\xi) \subseteq H_t(\xi) , \quad t \in T ,$$
 (2)

where $H_i(\xi)$ denotes the subspace in H, which is generated by all values $\xi(s), s \leq t$.

Let P be a probability distribution of the Gaussian process $\xi = \xi(t)$, $t \in T$, in some measurable space (X, \mathfrak{B}, P) of $\langle\!\langle \text{trajectories} \rangle\!\rangle x = x(t), t \in T$, where σ -algebra \mathfrak{B} is generated by all sets $\{x(t) \in B\}$ $(t \in T)$, B are Borel sets on the real line, so P is determined by finite-dimensional distributions of the random process $\xi = \xi(t), t \in T$. Let Q be a probability distribution of the Gaussian process $\eta = \eta(t), t \in T$, represented by the formula (1). According to well known Feldman's theorem (see, for example, [1]), Q is equivalent to $P(Q \sim P)$ if and only if the operator

$$\boldsymbol{B} = \mathscr{A}^* \mathscr{A} \tag{3}$$

is invertible and $I - B \in S_2$, where S_2 denotes the class of all Hilbert-Schmidt operators in H.

Received January 18, 1972.