Donald Orth Nagoya Math. J. Vol. 39 (1970), 29–37

ON HOLOMORPHIC FAMILIES OF HOLOMORPHIC MAPS

DONALD ORTH1)

Let *D* be the unit disk $\{z : |z| < 1\}$ in the complex plane *C* with boundary ∂D and closure \overline{D} , and denote by *R* the image of the canonical embedding $r \rightarrow r + iO$ of the real line into *C*. The symbol ε will be used throughout to denote a complex parameter; the unit disk in the complex ε -plane will be denoted by D_p . $A C^{1+a} \max \mathscr{C} : \partial D \times D_p \rightarrow D$ (0 < a < 1) is called a *holomorphic family of* C^{1+a} curves if

- 1° $\mathscr{C}_{\epsilon} = \mathscr{C} |\partial D \times \{\varepsilon\}$ is a $C^{1+\alpha}$ Jordan curve in C for every $\varepsilon \in D_p$;
- 2° $\mathscr{C}_t = \mathscr{C} | \{t\} \times D_p$ is a holomorphic function for every $t \in \partial D$;
- $3^{\circ} \quad \frac{\partial \mathscr{C}(t,\varepsilon)}{\partial t}$ is continuous in t and ε .

Denote by $\mathcal{Q}_{\varepsilon}$ the simply-connected region in C bounded by $\mathscr{C}(\partial D \times \{\varepsilon\})$.

We are interested in the existence of holomorphic maps $f: D \times D_p \to C$ which map $D \times \{\varepsilon\}$ conformally onto Ω_{ϵ} for every $\varepsilon \in D_p$ (f is then said to be associated with \mathcal{C}). The following theorem will be proved.

THEOREM 1. Let $\mathscr{C} : \partial D \times D_p \to C$ be a holomorphic family of $C^{1+\alpha}$ curves. If f is a holomorphic map associated with \mathscr{C} , then there exists a $C^{1+\alpha}$ homeomorphism $g : \partial D \to \partial D$ for which

(*)
$$\mathscr{C}(t,\varepsilon) = f(g(t),\varepsilon)$$

for all $(t, \varepsilon) \in \partial D \times D_p$, where f on the right hand side denotes the continuous extension of f to $\overline{D} \times D_p$.

Now \mathscr{C} can always be normalized by the condition that for some $\varepsilon_0 \in D_p$, \mathscr{C}_{ι_0} is the boundary value of a conformal map of $D \times \{\varepsilon_0\}$ onto Ω_{ι_0} (for let g_{ι_0} be such a conformal map, the existence of which is ensured by

Received January 8, 1969.

 $^{^{1)}}$ This research was partially supported by Contract Nonr 2216 (28) (NR-043-332). The author is currently an NSF postdoctoral fellow.