G. Ikegami Nagoya Math. J. Vol. 55 (1974), 161-179

ON WEAK CONCEPTS OF STABILITY

GIKŌ IKEGAMI

§1. Introduction.

The manifold in this paper is assumed to be connected differentiable of class C^{∞} . Let $\mathscr{D}^{r}(M)$ and $\mathfrak{X}^{r}(M)$ be the set of all diffeomorphisms and vector fields of class C^{r} on a manifold M with Whitney C^{r} topology, respectively. In [2], the concept of weak stability is defined. The definition is equivalent to the following ((2.1) of this paper); $f \in \mathscr{D}^{r}(M)$ or $X \in \mathfrak{X}^{r}(M)$ is weakly (allowably) stable if and only if there is a neighborhood U of f or X in $\mathscr{D}^{r}(M)$ or $\mathfrak{X}^{r}(M)$ such that for any (a suitable) g or $Y \in U$ the set of all elements topologically equivalent to g or Y is dense in U, respectively. Here, $f, g \in \mathscr{D}^{r}(M)$ are said to be topologically equivalent if they are topologically conjugate and $X, Y \in \mathfrak{X}^{r}(M)$ are said to be topologically equivalent if there is a homeomorphism mapping any trajectory of Xonto a trajectory of Y preserving the orientations of the trajectories. Similarly, weak Ω -stability is defined for f and X.

All weakly $(\Omega$ -) stable systems compose an open set. The set of all systems which are weakly $(\Omega$ -) stable but not structurally (or Ω -) stable is also an open set. In [2] it is shown that in case of the non-wandering set being finite the weak stability of a diffeomorphism of a compact manifold implies the structural stability. The nondensity of weakly stable diffeomorphisms and weakly Ω -stable diffeomorphisms are shown in [2].

One aim of this paper is to prove some results ((2.2), (3.2), and (4.2))about allowable stability which are similar to some results mentioned in [2] with or without proof. Another aim is to prove the existence of a vector field on the 2-plane \mathbb{R}^2 which is weakly stable but not structurally stable. This example is mentioned in [2] without proof.

§ 2. Weak stability and allowable stability.

Let T be any topological space and \sim be an equivalence relation