M. Itô Nagoya Math. J. Vol. 102 (1986), 181-184

REMARKS ON THE PAPER "TRANSIENT MARKOV CONVOLUTION SEMI-GROUPS AND THE ASSOCIATED NEGATIVE DEFINITE FUNCTIONS"

MASAYUKI ITÔ

Let X be a locally compact and σ -compact abelian group and let \hat{X} denote the dual group of X. We denote by ξ a fixed Haar measure on X and by $\hat{\xi}$ the Haar measure associated with ξ . In [2], we show the following

THEOREM. Let $(\alpha_i)_{i\geq 0}$ be a sub-Markov convolution semi-group on X and let ψ be the negative definite function associated with $(\alpha_i)_{i\geq 0}$. Then $(\alpha_i)_{i\geq 0}$ is transient if and only if Re $(1/\psi)$ is locally $\hat{\xi}$ -summable.

In this theorem, the "if" part is essential. To prove it, we showed the following

PROPOSITION (see Proposition 11 in [2]). Let n, m be non-negative integers and let $X = R^n \times Z^m$, where R and Z denote the additive group of real numbers and the additive group of integers. Let σ be a probability measure on X with $\operatorname{supp}(\sigma) - \operatorname{supp}(\sigma) = X$, where $\operatorname{supp}(\sigma)$ denotes the support of σ . Put $\psi(\hat{x}) = 1 - \hat{\sigma}(\hat{x})$ on X, where $\hat{\sigma}$ is the Fourier transform of σ . If $\operatorname{Re}(1/\psi)$ is locally $\hat{\xi}$ -summable, then $\sum_{k=1}^{\infty} (\sigma)^k$ converges vaguely, where $(\sigma)^1 = \sigma$ and $(\sigma)^k = (\sigma)^{k-1} * \sigma$ $(k \geq 2)$.

For any positive number p, we put

$$N_p = rac{1}{p+1} \Big(arepsilon + \sum\limits_{k=1}^{\infty} \Big(rac{1}{p+1} \sigma \Big)^k \Big)$$
 ,

where ε denotes the Dirac measure at the origin. The first main step of the proof in [2] is the following assertion:

(*) There exists $f_0 \in C_K^+(X)$ with $f_0 \neq 0$ such that

$$\left(\left(rac{1}{2}(N_p+\check{N}_p)-pN_p*\check{N}_p
ight)*f_{\scriptscriptstyle 0}*\check{f}_{\scriptscriptstyle 0}(0)
ight)_{p>0}$$

Received March 20, 1985.