CLASS-NUMBER PROBLEMS FOR CUBIC NUMBER FIELDS

STÉPHANE LOUBOUTIN

1. Introduction

Let \mathbf{M} be any number field. We let $D_{\mathrm{M}}, d_{\mathrm{M}}, h_{\mathrm{M}}, \zeta_{\mathrm{M}}, \mathbf{A}_{\mathrm{M}}$ and $\mathrm{Reg}_{\mathrm{M}}$ be the discriminant, the absolute value of the discriminant, the class-number, the Dedekind zeta-function, the ring of algebraic integers and the regulator of \mathbf{M}, respectively. We set $c=\frac{3+2 \sqrt{2}}{2}$. If q is any odd prime we let (\cdot / q) denote the Legendre's symbol. We let D_{P} and d_{P} be the discriminant and the absolute value of the discriminant of a polynomial P.

Lemma A (See [Sta, Lemma 3] and [Hof, Lemma 2]). Let \mathbf{M} be any number field. Then, ζ_{M} has at most one real zero in

$$
\left[1-\frac{1}{c \log d_{\mathrm{M}}}, 1[;\right.
$$

if such a zero exists, it is simple and is called a Siegel zero.

Lemma B (See [Lou 2]). Let \mathbf{M} be a number field of degree $n=r_{1}+2 r_{2}$ where \mathbf{M} has r_{1} real conjugate fields and $2 r_{2}$ complex conjugate fields. Let $s_{0} \in[(1 / 2), 1[$ be such that $\zeta_{\mathrm{M}}\left(s_{0}\right) \leq 0$. Then,

$$
\operatorname{Res}_{s=1}\left(\zeta_{\mathrm{M}}\right) \geq\left(1-s_{0}\right) d_{\mathrm{M}}^{\left(s_{0}-1\right) / 2}\left(1-\frac{2 r_{1}}{d_{\mathrm{M}}^{s_{0} / 2 n}}-\frac{2 \pi r_{2}}{d_{\mathrm{M}}^{s_{0} / n}}\right) .
$$

2. Lower bounds for class-numbers of cubic number fields

Let \mathbf{K} be a cubic number field. If \mathbf{K} / \mathbf{Q} is normal then \mathbf{K} is a cyclic cubic number field. Let $f_{\mathbf{K}}$ be its conductor. Then $d_{\mathbf{K}}=f_{\mathbf{K}}^{2}$ and $\zeta_{\mathbf{K}}(s)=\zeta(s) L(s, \chi)$ $L(s, \bar{\chi})$ where χ is a primitive cubic Dirichlet character modulo $f_{\mathbf{K}}$. Hence, we get

Received March 22, 1994.

