CLASS-NUMBER PROBLEMS FOR CUBIC NUMBER FIELDS

STÉPHANE LOUBOUTIN

1. Introduction

Let **M** be any number field. We let $D_{\rm M}$, $d_{\rm M}$, $h_{\rm M}$, $\zeta_{\rm M}$, $A_{\rm M}$ and $\operatorname{Reg}_{\rm M}$ be the discriminant, the absolute value of the discriminant, the class-number, the Dedekind zeta-function, the ring of algebraic integers and the regulator of **M**, respectively. We set $c = \frac{3+2\sqrt{2}}{2}$. If q is any odd prime we let (\cdot/q) denote the Legendre's symbol. We let D_P and d_P be the discriminant and the absolute value of the discriminant of a polynomial P.

LEMMA A (See [Sta, Lemma 3] and [Hof, Lemma 2]). Let \mathbf{M} be any number field. Then, $\zeta_{\mathbf{M}}$ has at most one real zero in

$$\left[1-\frac{1}{c\log d_{\rm M}},\,1\right[;$$

if such a zero exists, it is simple and is called a Siegel zero.

LEMMA B (See [Lou 2]). Let **M** be a number field of degree $n = r_1 + 2r_2$ where **M** has r_1 real conjugate fields and $2r_2$ complex conjugate fields. Let $s_0 \in [(1/2), 1[$ be such that $\zeta_M(s_0) \leq 0$. Then,

$$\operatorname{Res}_{s=1}(\zeta_{M}) \geq (1-s_{0})d_{M}^{(s_{0}-1)/2} \left(1-\frac{2r_{1}}{d_{M}^{s_{0}/2n}}-\frac{2\pi r_{2}}{d_{M}^{s_{0}/n}}\right).$$

2. Lower bounds for class-numbers of cubic number fields

Let **K** be a cubic number field. If \mathbf{K}/\mathbf{Q} is normal then **K** is a cyclic cubic number field. Let $f_{\mathbf{K}}$ be its conductor. Then $d_{\mathbf{K}} = f_{\mathbf{K}}^2$ and $\zeta_{\mathbf{K}}(s) = \zeta(s)L(s,\chi)$ $L(s,\bar{\chi})$ where χ is a primitive cubic Dirichlet character modulo $f_{\mathbf{K}}$. Hence, we get

Received March 22, 1994.