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Another Proof of decomposability of Nambu-Poisson tensors

Kentaro Mikami*

Abstract. Although Nambu-Poisson bracket is a natural generalization of Poisson
bracket, a very distinguished property of Nambu-Poisson bracket comparing Poisson
bracket is decomposability of its tensor. This is first conjectured in [1] and is given
affirmative answers by [2] and [4] independently. In this paper, we shall show another
proof to decomposability of Nambu-Poisson tensor, which is more elementary and
more direct to the property of decomposability comparing that of [2] or [4].

1 Introduction

In contrast to Poisson bracket being a binary operation, Nambu-Poisson is a multi-fold operation

provided with the same properties of Poisson bracket and the fundamental identity which is a

natural generalization of Jacobi identity. We recall the precise definition of Nambu-Poisson

bracket. Let $M$ be a n-dimensional $C^{\infty}$-manifold. An order $p$ Nambu-Poisson bracket on $M$ is

a p-fold skew-symmetric R-multilinear operation

$\{$ ... $\}$ : $C^{\infty}(M)^{p}$

$:=\frac{C^{\infty}(M)x\cdots xC^{\infty}(M)}{\Gamma timoe}\rightarrow C^{\infty}(M)$

provided with Leibniz rule for each argument, and the fundamental identity (or generalized

Jacobi identity):

$\{\mathcal{F}, \{\mathcal{G}\}\}=\sum_{\ell=1}^{p}\{g_{1}, \ldots\{\mathcal{F},g\ell\}, \ldots g_{p}\}$

where $\mathcal{F}=$ $(f_{1}, \ldots , f_{p-1})\in C^{\infty}(M)^{p-1},$ $\mathcal{G}=(g_{1}, \ldots g_{p})\in C^{\infty}(M)^{p}$ .
If order $p=2$ , then the fundamental identity is just Jacobi identity and order 2 Nambu-Poisson

brackets are Poisson brackets. Like as Poisson brackets, every order $p$ Nambu-Poisson bracket
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