On *-Representations of Partial *-Algebras

Itsuko Ikeda

Abstract

The first purpose of this paper is to study *-subrepresentations of a *-representation of a partial *-algebra. The second purpose is to characterize invariant positive sesquilinear forms of type I,II,III.

1. Introduction.

In this paper we shall investigate the fundamental properties of *-representations of partial *-algebras. The study of *-representations of partial *-algebras and partial O^* -algebras were began by Antoine and Karwouski [1], and have been continued by Antoine, Inoue and Trapani [2], from the situation of pure mathmatical and the physical applications. But, the studies of *-subrepresentations and invariant positive sesquilinear forms on partial *-algebras seem to be insufficient, and so we shall study these points in this paper.

In partial *-algebras, the multiplication is defined only partially and it dose not have the associative low. And so, to extend arguments that are considerd in the case of *-algebras, we need to reconsider some conditions. For example, the quasi-weak commutant $C_{qw}(\pi)$ is considered instead of the usual weak commutant $C_w(\pi)$ of π .

Let π be a *-representation of a partial *-algebra \mathcal{A} . For each projection E in $C_{qw}(\pi)$, we can define the *-representation π_E of \mathcal{A} by

$$\mathcal{D}(\pi_E) := \mathcal{E}\mathcal{D}(\pi), \ \pi_E(x) := \pi(x)E \ (x \in \mathcal{A}).$$